White Paper

Modified Differential Ground Fault System Field Testing
Low Voltage Switchgear and Switchboards Utilizing WL Circuit Breakers

Purpose

This document provides guidance for field testing, via primary current injection, for validation of proper functionality of the Siemens WL modified differential ground fault application. The configuration of this application is described in detail within the "Ground Fault Application Guide" (Siemens document number CBWP-GFWP1-1214), for providing ground fault protection when the equipment is bonded at multiple source locations. While the example includes two sources and a bus tie circuit breaker, these tests may be expanded to cover additional sources and tie circuit breakers.

Qualified Person

Siemens type WL circuit breakers should only be operated, inspected, and maintained by qualified personnel. For the purpose of this Guide, a qualified person is one who is familiar with the installation, construction, and operation of the equipment, and the hazards involved. In addition, he/she has the following qualifications:

a) Is trained and authorized to energize, de-energize, clear, ground and tag circuits and equipment in accordance with established safety practices.

b) Is trained in proper care and use of protective equipment in accordance with established safety practices.

c) Is trained in rendering first aid.

Circuit Breaker Settings

The WL circuit breaker ships from the factory at the lowest possible settings. The following functional tests may be conducted at any convenient settings, although Siemens makes the following recommendations:

a) Long-time, short-time, and instantaneous pick-up should be adjusted to maximum, or turned off.

b) Ground fault pick-up should be adjusted down to setting "A" or the minimum pick-up point (100 A for 800 A – 3200 A circuit breakers; 300 A for 4000 A – 6000 A circuit breakers).

c) For proper sequencing of operation, the ground fault delay of the tie circuit breaker (52-T) should be set to a value less than that of the main circuit breakers (52-1 and 52-2 in the following Figure). Recommend setting the ground fault delay to 100 ms for tie circuit breakers (52-T), and 200 ms for main circuit breakers (51-1; 52-2).

The in-service settings for all functions should be determined by a coordination study.
<table>
<thead>
<tr>
<th>Test</th>
<th>Primary Current Source Test Points</th>
<th>Test Jumper Connection Points</th>
<th>Pre-Test Circuit Breaker State</th>
<th>Expected Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1 and N1</td>
<td>A2 to N2</td>
<td>52-1: closed, 52-T: open, 52-2: closed</td>
<td>no trip</td>
</tr>
<tr>
<td>2</td>
<td>A1 and N1</td>
<td>A2 to G1</td>
<td>52-1: closed, 52-T: open, 52-2: closed</td>
<td>52-1 trips on GF</td>
</tr>
<tr>
<td>3</td>
<td>A1 and N1</td>
<td>A4 to N4</td>
<td>52-1: closed, 52-T: closed, 52-2: open</td>
<td>no trip</td>
</tr>
<tr>
<td>4</td>
<td>A1 and N1</td>
<td>A4 to G2</td>
<td>52-1: closed, 52-T: closed, 52-2: open</td>
<td>52-T trips on GF; 52-1 no trip</td>
</tr>
<tr>
<td>5</td>
<td>A3 and N3</td>
<td>A4 to N4</td>
<td>52-1: closed, 52-T: open, 52-2: closed</td>
<td>no trip</td>
</tr>
<tr>
<td>6</td>
<td>A3 and N3</td>
<td>A4 to G2</td>
<td>52-1: closed, 52-T: closed, 52-2: open</td>
<td>52-2 trips on GF</td>
</tr>
<tr>
<td>7</td>
<td>A3 and N3</td>
<td>A2 to N2</td>
<td>52-1: open, 52-T: closed, 52-2: closed</td>
<td>no trip</td>
</tr>
<tr>
<td>8</td>
<td>A3 and N3</td>
<td>A2 to G1</td>
<td>52-1: open, 52-T: closed, 52-2: closed</td>
<td>52-T trips on GF; 52-2 no trip</td>
</tr>
</tbody>
</table>
Verifying Ground Paths

Before testing, the ground bus of the system should be verified to determine that unintended ground paths do not exist, which could bypass the ground fault equipment discussed in this document.

This may be accomplished either by visual inspection, or with the assistance of high-voltage testers and resistance measurement test equipment.

Verifying Main Circuit Breaker’s Sensor Polarity

Verifying Main Circuit Breaker’s Sensor Polarity (Table Tests No. 1 and 5; “No-Trip” Test)

The following tests validate the polarity of the main circuit breaker’s ground fault current sensors. Steps 1 – 5 validate Main 1, and Steps 6 – 10 validate Main 2. If there are additional main circuit breakers, repeat steps 1 – 5, with the test jumpers and test points relocated to the equivalent connection point for the additional main circuit breaker.

1. Connect the test jumper as indicated in Test 1.
2. Close both main circuit breakers (tie circuit breaker must be open, if present).
3. Inject 1000 A into phase 1 as shown in the table for 1 – 3 seconds. No circuit breaker should trip.
4. Record test results.
5. Repeat steps 1 – 4 for phases 2 and 3.
6. Connect the test jumper as indicated in Test 5.
7. Close both main circuit breakers (tie circuit breaker must be open, if present).
8. Inject 1000 A into phase 1 as shown in the table for 1 – 3 seconds. No circuit breaker should trip.
9. Record test results.
10. Repeat steps 6 – 9 for phases 2 and 3.

Verifying Main Circuit Breaker’s Sensor Polarity (Table Tests No. 2 and 6; “Trip” Test)

The following tests validate the polarity of the main circuit breaker’s ground fault current sensors. Steps 1 – 5 validate Main 1, and Steps 6 – 10 validate Main 2. If there are additional main circuit breakers, repeat steps 1 – 5, with the test jumpers and test points relocated to the equivalent connection point for the additional main circuit breaker.

1. Connect the test jumper as indicated in Test 2.
2. Close both main circuit breakers (tie circuit breaker must be open, if present).
3. Inject 1000 A into phase 1 as shown in the table for 1 – 3 seconds. The main circuit breaker (52-1) should trip.
4. Record test results.
5. Repeat steps 1 – 4 for phases 2 and 3.
6. Connect the test jumper as indicated in Test 6.
7. Close both main circuit breakers (tie circuit breaker must be open, if present).
8. Inject 1000 A into phase 1 as shown in the table for 1 – 3 seconds. The main circuit breaker (52-2) should trip.
9. Record test results.
10. Repeat steps 6 – 9 for phases 2 and 3.

The following tests are required when tie circuit breakers are applied between alternate power sources. If the application does not utilize tie circuit breakers, or the tie circuit breaker does not have integral protection, the following tests may be omitted.
Verifying Tie Circuit Breaker’s Sensor Polarity
(Table Tests No. 3 and 7; "No-Trip" Test)

The following tests validate the polarity of the tie circuit breaker’s ground fault current sensors. Steps 1 – 5 validate Main 1, and Steps 6 – 10 validate Main 2. If there are additional main circuit breakers isolated by a tie circuit breaker from the rest of the power system, repeat steps 1 – 5, with the test jumpers and test points relocated to the equivalent connection point for the additional main circuit breaker and tie circuit breaker.

1. Connect the test jumper as indicated in Test 3.
2. Close main circuit breaker (52-1) and the tie circuit breaker (52-T). Main 2 circuit breaker must be open.
3. Inject 1000 A into phase 1 as shown in the table for 1 – 3 seconds. No circuit breaker should trip.
4. Record test results.
5. Repeat steps 1 – 4 for phases 2 and 3.

6. Connect the test jumper as indicated in Test 7.
7. Close the alternate main circuit breaker (52-2) and the tie circuit breaker (52-T). Main 1 circuit breaker (52-1) must be open.
8. Inject 1000 A into phase 1 as shown in the table for 1 – 3 seconds. The tie circuit breaker (52-T) should trip.
9. Record test results.
10. Repeat steps 6 – 9 for phases 2 and 3.

Verifying Tie Circuit Breaker’s Sensor Polarity
(Table Tests No. 4 and 8; "Trip" Test)

The following tests validate the polarity of the main circuit breaker’s ground fault current sensors. Steps 1 – 5 validate Main 1, and Steps 6 – 10 validate Main 2. If there are additional main circuit breakers isolated by a tie circuit breaker from the rest of the power system, repeat steps 1 – 5, with the test jumpers and test points relocated to the equivalent connection point for the additional main circuit breaker and tie circuit breaker.

1. Connect the test jumper as indicated in Test 4.
2. Close main circuit breaker (52-1) and the tie circuit breaker (52-T). Main 2 circuit breaker (52-2) must be open.
3. Inject 1000 A into phase 1 as shown in the table for 1 – 3 seconds. The tie circuit breaker (52-T) should trip.
4. Record test results.
5. Repeat steps 1 – 4 for phases 2 and 3.
6. Close the alternate main circuit breaker (52-2) and the tie circuit breaker (52-T). Main 1 circuit breaker must be open.
7. Inject 1000 A into phase 1 as shown in the table for 1 – 3 seconds. The tie circuit breaker (52-T) should trip.
8. Record test results.
9. Repeat steps 6 – 9 for phases 2 and 3.

Sample Test Report

As previously discussed, the test results should be recorded and retained for future use. See page 5 for a sample test report.

Technical Support

For technical support, please contact the Technical Support Hotline at 1-800-333-7421, or submit a request through Online Support Request: http://support.automation.siemens.com/US
SIEMENS

Modified Differential Ground Fault System Field Testing Report

Date: __________________

Tested By: _______________________________ Employed By: ______________________________

Note: This test report should be retained by those in charge of the building’s electrical installation in order to be available to the authority having jurisdiction.

Identification No (52-1): ________________________________
Identification No (52-T): ________________________________
Identification No (52-2): ________________________________
Identification No (___): ________________________________
Identification No (___): ________________________________

Ground Path Inspection

Verified that there are no ground paths bypassing the ground fault sensors. □

Test Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Expected Result</th>
<th>Line 1</th>
<th>Line 2</th>
<th>Line 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>no trip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>trip (0 - 0.5 sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>no trip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>trip (0 - 0.5 sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>no trip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>trip (0 - 0.5 sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>no trip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>trip (0 - 0.5 sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

__
__
__
__
__
Notes:
Notes:
Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.