SAY Electronic Valve Actuator

Product Description
The SAY Electronic Valve Actuator requires a 24 Vdc or 24 Vac, Class 2, supply signal to control a 1-1/2-inch or 2-inch Siemens Pressure Independent Control valve with a 5/8-inch (15 mm) standard stroke.

Product Numbers
SAY61.03U Proportional Control Actuator
SAY81.03U Three-position Control Actuator

Warning/Caution Notations

| WARNING: | ! | Personal injury or loss of life may occur if you do not follow a procedure as specified. |
| CAUTION: | ! | Equipment damage or loss of data may occur if you do not follow a procedure as specified. |

Required Tools
- 4 mm hex key, or 10 mm wrench
- Flat-blade screwdriver or Phillips screwdriver to remove wiring compartment cover

Expected Installation Time
- 30 minutes Wiring a factory-installed actuator
- 45 minutes Field replacement of actuator

Prerequisites

NOTE: Consult Technical Support if using with a TEC.

WARNING:
If mounting the actuator to a valve already in line, either close the shut-off valves in the piping (upstream first, then downstream) or switch off the pump to allow the differential pressure in the valve to drop.

Mounting Positions

Figure 1. Acceptable Indoor Mounting Positions.

Figure 2. Acceptable Outdoor Mounting Positions with Weather Shield for NEMA 3R Protection.
Installation

CAUTION:
Do not damage or scratch the polished surface of the valve stem.

Mounting an Actuator to a Valve

1. Ensure stem connection plate in the Valve Stem Coupling is in the OPEN position. See Figure 3.

2. Open the bonnet connection U-bracket. See Figure 4.

3. Pull the valve stem to the fully extended position. Then, slide the actuator on the valve bonnet. See Figure 5.

4. Completely close the bonnet connection U-bracket. See Figure 6.
NOTE: Position the actuator to accommodate the wiring. Hold the actuator in place while tightening the actuator U-bracket bolt.

5. Tighten the U-bracket bolt using a 10 mm wrench (or 4 mm hex key) to 5 Nm (44 in-lbs) torque. See Figure 7.

![Figure 7.](image)

6. Rotate the manual adjuster clockwise to manually extend the actuator shaft until it covers the head of the valve stem. See Figure 8.

![Figure 8.](image)

7. Close the stem connection plate securely over the valve stem. See Figure 9.

![Figure 9.](image)

8. Secure the stem connection plate by tightening the bolt, using a 10 mm wrench (or 4 mm hex key). See Figure 10.

![Figure 10.](image)

The mounting is now complete.

CAUTION:

Do NOT rotate the actuator on the valve once the actuator and valve stem are connected. Doing so will inadvertently adjust the flow setting of the valve or damage the stem.

Removing the actuator from a valve

1. Loosen the stem connection plate in the Valve Stem Coupling by loosening the bolt, using a 10 mm wrench (or 4 mm hex key).
2. Open the stem connection plate over the valve stem.
3. Manually retract the actuator shaft by turning the Manual Adjuster counterclockwise until it reveals the head of the valve stem.
4. Loosen the U-bracket using a 10 mm wrench (or 4 mm hex key).
5. Completely open the bonnet connection U-bracket.
6. Push the valve stem to the fully retracted position. Then, slide the actuator off the valve bonnet.
7. Remove the actuator from the valve, being careful not to damage the valve stem.
8. Close the bonnet connection U-bracket.
Wiring

Do not use autotransformers. Use earth ground isolating step-down Class 2 power supply transformers.

Determine supply transformer rating by summing total VA of all actuators used. The maximum rating for a Class 2 step-down transformer is 100 VA.

It is recommended that no more than 10 actuators are powered by one transformer.

Parallel Control of Actuators

SAY81.0-3U - Three-position actuators must have their own specific controller.

SAY61.03U - Up to 10 actuators can be driven in parallel from a single controller output with a rating of 1 mA. Modulating actuators have an input impedance of 100KΩ.

NOTE: Use either a Phillips head screwdriver or a flat-blade screwdriver to remove the wiring compartment housing cover for access to the terminal block and DIP switches.

DIP Switch Setting (SAY61.03U only)

Switch 1: Control Signal

Select between 0 to 10 Vdc or 4 to 20 mA input signal for terminal Y (0 to 10 Vdc default).

Switch 2: Flow Characteristic

Do not change the flow characteristic switch. The proper flow characteristic is designed into the Siemens Pressure independent Control Valve.

NOTE: Changing the default setting will modify a linear valve to a fast-opening characteristic. When set to default, the flow characteristic is determined by the valve body.

Table 1. DIP Switch Settings.

<table>
<thead>
<tr>
<th>Positioning Signal "Y"</th>
<th>Position Feedback "U"</th>
<th>Flow Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF 1)</td>
<td>0 to 10 Vdc</td>
<td>0 to 10 Vdc</td>
</tr>
<tr>
<td>ON</td>
<td>DC 4 to 20 mA</td>
<td>0 to 10 Vdc</td>
</tr>
</tbody>
</table>

1) Factory setting: All DIP switches are set to OFF.
Wiring, SAY61.03U

Connecting Terminals (SAY61.03U)

<table>
<thead>
<tr>
<th>Connection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0</td>
<td>System Neutral (SN)</td>
</tr>
<tr>
<td>G</td>
<td>System Potential (SP)</td>
</tr>
<tr>
<td>Y</td>
<td>Positioning signal for 0 to 10 Vdc/4 to 20 mA</td>
</tr>
<tr>
<td>M</td>
<td>Measuring neutral</td>
</tr>
<tr>
<td>U</td>
<td>Position feedback 0 to 10 Vdc</td>
</tr>
<tr>
<td>Z</td>
<td>Positioning signal forced control</td>
</tr>
</tbody>
</table>

NOTE:
If the application requires a reverse-acting, modulating actuator (a control signal of 0V corresponds to the valve being closed, and 10V to the valve being open), then the Function Module (AZX61.1) must be ordered and installed in the SAY61.03U with DIP switch 1 set to **ON**.

Wiring Diagrams (SAY61.03U)

![Wiring Diagrams (SAY61.03U)](image)

Figure 12. Connecting Terminals (SAY61.03U).

Accessories

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x ASC10.51 Auxiliary Switch</td>
<td>1x ASC10.51 Auxiliary Switch</td>
</tr>
</tbody>
</table>

![Accessories](image)

Figure 13. Applications.

The wiring diagrams show all possible connections. The application determines which connections are used. A and B are optional auxiliary switches.

Wiring, SAY81.03U

Connecting Terminals (SAY81.03U)

<table>
<thead>
<tr>
<th>Connection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>System Potential (SP)</td>
</tr>
<tr>
<td>Y1</td>
<td>Positioning signal (actuator’s stem extends)</td>
</tr>
<tr>
<td>Y2</td>
<td>Positioning signal (actuator’s stem retracts)</td>
</tr>
</tbody>
</table>

NOTE:
If the application requires a reverse-acting, floating actuator, then the Y1 and Y2 control signals can be reversed so that the Y1 controller signal is connected to the Y2 actuator terminal, and the Y2 controller signal is connected to the Y1 actuator terminal.

Wiring Diagrams (SAY81.03U)

![Wiring Diagrams (SAY81.03U)](image)

Figure 14. Connecting Terminals (SAY81.03U).

Accessories

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x ASC10.51 Auxiliary Switch</td>
<td>1x ASC10.51 Auxiliary Switch</td>
</tr>
</tbody>
</table>

![Accessories](image)

Figure 15. Application.

The wiring diagrams show all possible connections. The application determines which connections are used.
Manual Override

Manual operation

When pushing the manual adjuster down (1), it engages and the actuator can be manually operated.

When turning the manual adjuster in a clockwise/counterclockwise direction (2), the actuator’s stem extends/retracts. See Figure 16.

An overload protection prevents damage to the manual adjuster.

Setting the position

Upon actuation and locking the slide switch (see Figure 17), the manual adjuster remains engaged.

When in this mode, do not turn the manual adjuster.

Disengaging the setting

When resetting the slide switch (see Figure 18), the manual adjuster returns to Automatic Mode.

Commissioning and Operation

Function Check and Calibration

Mechanical Check

Prior to making the function check, ensure that:

- Actuator is mechanically connected to a Siemens Pressure Independent Control Valve.
- Actuator is in Manual Operation mode.

The actuator can be operated with the help of the Manual Adjuster.

<table>
<thead>
<tr>
<th>Manual Adjuster Action</th>
<th>Actuator Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turning in clockwise direction</td>
<td>Actuator's stem extends</td>
</tr>
<tr>
<td>Turning in counterclockwise direction</td>
<td>Actuator's stem retracts</td>
</tr>
</tbody>
</table>

NOTE: Ensure that the actuator’s and valve’s stems are securely connected in all positions.

If the actuator is forced to travel beyond its end positions, overload protection responds.

Electrical Check

Prior to making the function check, ensure that:

- Actuator is mechanically connected to a Siemens Pressure Independent Control Valve.
- Actuator is in Automatic Operation mode.
- Actuator and, if required, accessories are correctly fitted and connected.
- Power is applied.

Calibration (SAY61.03U Only)

Calibration is required with modulating actuators, and before the function check. Calibration must be performed manually.

Prior to calibrating, ensure that:

- Actuator is properly connected to a valve.
- Housing cover is removed.
- Power is applied.

If required, calibration can be repeated any number of times.
To initiate the calibration process insert a flat-blade screwdriver into the calibration slot to short out the two sides of the slot. See Figure 19.

Figure 19. Step 1—Bridge contact.

During calibration, the actuator detects the valve’s end positions and files the exact stroke in its internal memory. Calibration takes place in three phases:

- Actuator drives to H₀ (1), retracting actuator stem. Detection of upper end position.
- Actuator drives to H₁₀₀ (2), extending actuator stem. Detection of lower end position.
- The detected values are stored (3). Then the actuator follows the applied control signal.

Observe the status indication (LED) during and after calibration. See Figures Figure 20 and Table 2.

Table 2. LED Indication and Status.

<table>
<thead>
<tr>
<th>LED</th>
<th>Indication</th>
<th>Operating state</th>
<th>Remarks, troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>On</td>
<td>Automatic mode</td>
<td>Normal operation</td>
</tr>
<tr>
<td></td>
<td>Blinking</td>
<td>Calibration</td>
<td>Wait until calibration is finished (then green or red light)</td>
</tr>
<tr>
<td></td>
<td>In manual mode</td>
<td>Manual adjuster in MAN position</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>On</td>
<td>Calibration error</td>
<td>Start calibration again</td>
</tr>
<tr>
<td></td>
<td>Blinking</td>
<td>Detection of foreign object</td>
<td>Check valve / actuator</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>No power or electronics faulty</td>
<td>Check operating voltage</td>
</tr>
</tbody>
</table>

SAY61.03U Function Check

Perform the function check for modulating actuators after calibration with a point test according to the following table:

Table 3. Modulating Function Check.

<table>
<thead>
<tr>
<th>Connection Terminals</th>
<th>Actuator Response</th>
<th>Position Feedback (U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y 6V 13.6 mA</td>
<td>Actuator’s stem extends (60%)</td>
<td>6V</td>
</tr>
<tr>
<td>Y 5V 12 mA</td>
<td>Actuator’s stem retracts (50%)</td>
<td>5V</td>
</tr>
<tr>
<td>“Z” connected to “G”</td>
<td>Actuator’s stem extends to 100%</td>
<td>10V</td>
</tr>
<tr>
<td>“Z” connected to “G0”</td>
<td>Actuator’s stem retracts to 0%</td>
<td>0V</td>
</tr>
</tbody>
</table>

After successful completion of the function check, the actuator is ready for normal operation.

SAY81.03U Function Check

Perform the function check for three-position actuators according to the following table:
Table 4. Three-Position (Floating) Function Check.

<table>
<thead>
<tr>
<th>Connection Terminals</th>
<th>Actuator Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage at Y1</td>
<td>Actuator’s stem extends</td>
</tr>
<tr>
<td>Voltage at Y2</td>
<td>Actuator’s stem retracts</td>
</tr>
<tr>
<td>No voltage at Y1 and Y2</td>
<td>Actuator’s stem maintains the position</td>
</tr>
</tbody>
</table>

After successful completion of the function check, the actuator is ready for normal operation.

Dimensions

Figure 21. SAY Dimensions in Inches (Millimeters).

<table>
<thead>
<tr>
<th>Product Numbers</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>C1</th>
<th>C2</th>
<th>D</th>
<th>E</th>
<th>▶</th>
<th>▶▶</th>
<th>Weight lbs (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAY61.03U</td>
<td>9.53 (242)</td>
<td>4.88 (124)</td>
<td>5.91 (150)</td>
<td>2.68 (68)</td>
<td>3.23 (82)</td>
<td>3.15 (80)</td>
<td>3.94 (100)</td>
<td>3.94 (100)</td>
<td>7.87 (200)</td>
<td>4.1 (1.85)</td>
</tr>
<tr>
<td>SAY81.03U</td>
<td>10.51 (267)</td>
<td>6.06 (154)</td>
<td>11.81 (300)</td>
<td>7.87 (200)</td>
<td>3.94 (100)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>4.6 (2.08)</td>
</tr>
<tr>
<td>With ASK39.1</td>
<td>10.51 (267)</td>
<td>6.06 (154)</td>
<td>11.81 (300)</td>
<td>7.87 (200)</td>
<td>3.94 (100)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>