SIEMENS

TEC Controller
Terminal Box Controller (VAV) - Electronic Output

Owner's Manual
Table of Contents

How To Use This Manual .. 5

Chapter 1 – Product Overview ... 7

Hardware Inputs .. 7
Hardware Outputs .. 9
Ordering Notes ... 9
Power Wiring .. 10
Communication Wiring ... 10
Controller LED Indicators ... 11
Temperature Sensors .. 11
 - Room Temperature Sensor ... 11
 - Duct Temperature Sensor ... 11
Actuators ... 12
Related Equipment .. 12

Chapter 2 – Applications ... 13

Basic Operation .. 13
 - Control Temperature Setpoints .. 13
 - Day/Night Mode ... 13
 - Night Mode Override Switch ... 13
 - Control Loops .. 13
 - Calibration ... 13
 - Fail-Mode Operation ... 14
 - Notes .. 14

Application 2020 VAV Cooling Only .. 14
Application 2021 VAV Cooling or Heating ... 15
Application 2022 VAV with Electric Reheat or Baseboard Radiation 16
Application 2023 VAV with Hot Water Reheat ... 18
Application 2024 VAV Series Fan Powered with Electric Reheat 19
Application 2025 VAV Series Fan Powered with Hot Water Reheat 20
Application 2026 VAV Parallel Fan Powered with Electric Reheat 21
Application 2027 VAV Parallel Fan Powered with Hot Water Reheat 22
Application 2091 Slave Mode .. 22

Chapter 3 – Point Database .. 23

Chapter 4 – Basic Service and Maintenance ... 30

Basic Service Information .. 30
Preventive Maintenance .. 30
Safety Features .. 31

Glossary .. 32

Index ... 36
How To Use This Manual

This manual is written for the owner and user of the TEC Terminal Box Controller. It is designed to help you become familiar with the Siemens TEC and its applications. This section covers manual organization, manual conventions, symbols used in the manual, and other information that will help you use this manual.

Manual Organization

This manual contains the following chapters:

- **Chapter 1 - Hardware**, describes the hardware components and the accessories that are used with the TEC.
- **Chapter 2 - Applications**, describes the control applications available in the model of the TEC that includes a terminal block for wireable input/output connections.
- **Chapter 3 - Point Database**, defines the point database descriptors and includes address and applications.
- **Chapter 4 – Basic Service and Maintenance**, describes basic corrective measures you can take should you encounter a problem when using the TEC. For issues not covered in this chapter, consult your local Siemens Industry representative.
- The **Glossary** describes the terms and acronyms used in this manual.
- The **Index** helps you locate information presented in this manual.

Manual Conventions

The following table lists conventions to help you use this manual in a quick and efficient manner.

<table>
<thead>
<tr>
<th>Convention</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbered Lists (1, 2, 3…) indicate a procedure with sequential steps.</td>
<td>1. Turn OFF power to the field panel. 2. Turn ON power to the field panel. 3. Contact the local Siemens Industry representative.</td>
</tr>
<tr>
<td>Conditions that must be completed or met before beginning a task are designated with ▶. Intermediate results (what will happen following the execution of a step), are designated with ▶. Results, which inform the user that a task was completed successfully, are designated with ⇨.</td>
<td>▶Composer software is properly installed. ▶A Valid license is available. 1. Select Start > Programs > Siemens > GMS > Composer. ▶The Project Management window displays. 2. Open an existing project or create a new one. ▶The project window displays.</td>
</tr>
<tr>
<td>Actions that should be performed are specified in boldface font.</td>
<td>Type F for Field panels. Click OK to save changes and close the dialog box.</td>
</tr>
<tr>
<td>Error and system messages are displayed in Courier New font.</td>
<td>The message Report Definition successfully renamed displays in the status bar.</td>
</tr>
<tr>
<td>New terms appearing for the first time are italicized.</td>
<td>The field panel continuously executes a user-defined set of instructions called the control program.</td>
</tr>
</tbody>
</table>

This symbol signifies Notes. Notes provide additional information or helpful hints.
How To Use This Manual

Convention	Examples
Cross references to other information are indicated with an arrow and the page number, enclosed in brackets: [→92] | For more information on creating flowcharts, see Flowcharts [→92].
Placeholders indicate text that can vary based on your selection. Placeholders are specified by italicized letters, and enclosed with brackets []. | Type A C D H [username] [field panel #].

Manual Symbols
The following table lists the safety symbols used in this manual to draw attention to important information.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTICE</td>
<td>CAUTION</td>
<td>Equipment damage may occur if a procedure or instruction is not followed as specified. (For online documentation, the NOTICE displays in white with a blue background.)</td>
</tr>
<tr>
<td>!</td>
<td>CAUTION</td>
<td>Minor or moderate injury may occur if a procedure or instruction is not followed as specified.</td>
</tr>
<tr>
<td>!</td>
<td>WARNING</td>
<td>Personal injury or property damage may occur if a procedure or instruction is not followed as specified.</td>
</tr>
<tr>
<td>!</td>
<td>DANGER</td>
<td>Electric shock, death, or severe property damage may occur if a procedure or instruction is not followed as specified.</td>
</tr>
</tbody>
</table>

Getting Help
For more information about the TEC Terminal Box Controller, contact your local Siemens Industry representative.

Where to Send Comments
Your feedback is important to us. If you have comments about this manual, please submit them to SBT_technical.editor.us.sbt@siemens.com
Chapter 1 – Product Overview

The TEC Terminal Box Controller is the Siemens Industry FLN controller used in pressure independent Variable Air Volume applications. It provides Direct Digital Control (DDC) for eight applications and is available in both short and long board hardware assemblies.

- The controller can operate as an independent, stand-alone, DDC room controller or it can be networked with a field panel.
- The controller provides all termination, input/output, system and local communication connections.
- The controller hardware consists of the controller with cover and mounting bracket (See Figure TEC Terminal Box Controller).

The following applications are covered:
- Slave Mode (Application 2091)
- VAV Cooling Only (Application 2020)
- VAV Cooling or Heating (Application 2021)
- VAV with Electric Reheat or Baseboard Radiation (Application 2022)
- VAV with Hot Water Reheat (Application 2023)
- VAV Series Fan Powered with Electric Reheat (Application 2024)
- VAV Series Fan Powered with Hot Water Reheat (Application 2025)
- VAV Parallel Fan Powered with Electric Reheat (Application 2026)
- VAV Parallel Fan Powered with Hot Water Reheat (Application 2027)

Hardware Inputs

Analog

<table>
<thead>
<tr>
<th>Air velocity sensor</th>
<th>Application 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Application 2021</td>
</tr>
<tr>
<td></td>
<td>Application 2022</td>
</tr>
<tr>
<td></td>
<td>Application 2023</td>
</tr>
<tr>
<td></td>
<td>Application 2024</td>
</tr>
<tr>
<td></td>
<td>Application 2025</td>
</tr>
<tr>
<td></td>
<td>Application 2026</td>
</tr>
<tr>
<td></td>
<td>Application 2027</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Room temperature sensor</th>
<th>Application 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Application 2021</td>
</tr>
<tr>
<td></td>
<td>Application 2022</td>
</tr>
<tr>
<td></td>
<td>Application 2023</td>
</tr>
<tr>
<td></td>
<td>Application 2024</td>
</tr>
<tr>
<td></td>
<td>Application 2025</td>
</tr>
<tr>
<td></td>
<td>Application 2026</td>
</tr>
<tr>
<td></td>
<td>Application 2027</td>
</tr>
</tbody>
</table>

(Optional) Room temperature setpoint dial

| Application 2020 |
| Application 2021 |
| Application 2022 |
| Application 2023 |
| Application 2024 |
| Application 2025 |
| Application 2026 |
| Application 2027 |
Hardware Inputs

(Optional) Auxiliary or duct temperature sensor

- Application 2020
- Application 2021
- Application 2022
- Application 2023
- Application 2024
- Application 2025
- Application 2026
- Application 2027

Digital

(Optional) Night mode override

- Application 2020
- Application 2021
- Application 2022
- Application 2023
- Application 2024
- Application 2025
- Application 2026
- Application 2027

(Optional) Wall switch

- Application 2020
- Application 2021
- Application 2022
- Application 2023
- Application 2024
- Application 2025
- Application 2026
- Application 2027

(Optional) Night mode override

- Application 2020
- Application 2021
- Application 2022
- Application 2023
- Application 2024
- Application 2025
- Application 2026
- Application 2027

(Optional) Wall switch

- Application 2020
- Application 2021
- Application 2022
- Application 2023
- Application 2024
- Application 2025
- Application 2026
- Application 2027
Hardware Outputs

Analog

None

Digital

Damper actuator (DO 1/DO 2)
- Application 2020
- Application 2021
- Application 2022
- Application 2023
- Application 2024
- Application 2025
- Application 2026
- Application 2027

Autozero Module
- Application 2020
- Application 2021
- Application 2022
- Application 2023

Stage 1 electric heat or 2-position heating valve
- Application 2022

Stage 1 electric heat
- Application 2024
- Application 2026

Stage 2 electric heat
- Application 2022
- Application 2024
- Application 2026

Stage 3 electric heat
- Application 2022
- Application 2024
- Application 2026

1st heating valve actuator
- Application 2023
- Application 2025
- Application 2027

2nd heating valve actuator
- Application 2023

Series Fan
- Application 2024
- Application 2025

Parallel Fan
- Application 2026
- Application 2027

Ordering Notes

TEC Terminal Box Controller 540-100N
TEC Terminal Box Controller with Autozero Module 540-200N
Generic Controller I/O Layout. See Wiring Diagram for application specific details.

Power Wiring

- **Power Trunk**
 - EARTH (OPTIONAL LOCAL CONNECTION)
 - NOT REQUIRED FOR OPERATION
 - 24 Vac PHASE (LIT)
 - 24 Vac NEUTRAL (COMMON)

Communication Wiring

The controller connects to the field panel by means of a Floor Level Network (FLN) trunk. Communication wiring connects to the three screw terminals on the controller labeled "+" (positive), "-" (negative), and "(" (reference).

3-WIRE FLN TRUNK

- REFERENCE GROUNDED AT SINGLE LOCATION TYPICALLY AT FIELD PANEL
- IF 2-WIRE (1PR) CABLE IS USED THERE WILL BE NO CONNECTION TO THE REFERENCE TERMINAL
- DO NOT CONNECT THE SHIELD WIRE TO THE REFERENCE TERMINAL
Controller LED Indicators

NOTE:
The TX and RX LEDs indicate communication over the FLN.

To determine if the controller is powered up and working, verify that the Basic Sanity Test (BST) Light Emitting Diode (LED) is flashing ON/OFF once per second. The controller has nine Light Emitting Diode (LED) indicators (see Figure Siemens BACnet VAV Controller).

<table>
<thead>
<tr>
<th>LED Type</th>
<th>Label (if present)*</th>
<th>LED Number</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO</td>
<td>LED 1 - LED 6</td>
<td>1 – 6</td>
<td>Indicates the ON/OFF status of the DO associated with it. A glowing LED indicates that the DO is energized.</td>
</tr>
<tr>
<td>Transmit</td>
<td>TX</td>
<td>7</td>
<td>Indicates, when flashing, that the controller is transmitting information to the field panel.</td>
</tr>
<tr>
<td>Receive</td>
<td>RX</td>
<td>8</td>
<td>Indicates, when flashing, that the controller is receiving information from the field panel.</td>
</tr>
<tr>
<td>BST</td>
<td>BST</td>
<td>9</td>
<td>Indicates, when flashing ON and OFF once per second, that the controller is functioning properly.</td>
</tr>
</tbody>
</table>

* Some LED labels and numerals may be hidden by the controller cover.

Temperature Sensors

Temperature sensors used with the TEC Terminal Box Controller include an electronic room temperature sensor and an optional duct temperature sensor.

Room Temperature Sensor

The room temperature sensor connects to the controller by means of a cable terminated at both ends with a six-conductor RJ-11 plug-in connector.

See the Ordering Notes section for the location of the room temperature sensor/Human Machine Interface (HMI) port.

Duct Temperature Sensor

An optional duct temperature sensor provides duct air temperature sensing inputs to the controller.

For more information about temperature sensors, contact your local Siemens Industry representative.
Actuators

Actuators used with the TEC Terminal Box Controller include electronic damper motors, electronic valve motors, and electronic valve assemblies. These actuators are powered through the controller to position cooling and/or reheat valves or supply air dampers.

Related Equipment

- (Optional) Autozero Module
- (Optional) Relay Module
- Damper Actuator(s)
- (Optional) Duct Temperature Sensor
- Room Temperature Sensor
- (Optional) Valve Actuator

Contact your local Siemens Industry representative for product numbers and more information.
Chapter 2 – Applications

Basic Operation
The TEC Terminal Box Controller provides Direct Digital Control (DDC) for Variable Air Volume (VAV) terminal box applications. Temperature control varies with the application. If present, heating can be provided by hot water, up to three stages of electric reheat, or optional baseboard radiation.

Control Temperature Setpoints
The controller maintains a specified temperature setpoint based on Day/Night mode, the heating/cooling mode, or the setpoint dial (if used).
This application has a number of different room temperature setpoints (DAY HTG STPT, NGT CLG STPT, RM STPT DIAL, and so on.). The application actually controls using the CTL STPT. CTL STPT is set to different values depending on its override status, the time of day, whether or not a temperature deadband (zero energy band) has been configured, and the type of RTS used.

Day/Night Mode
The controller maintains the specified day setpoint temperature during daytime hours and the specified night setpoint at night.

Night Mode Override Switch
If the ROOM TEMPERATURE SENSOR has an override switch, it can be used to command the controller into day mode for an adjustable period of time. This only affects a controller in night mode.

Control Loops

Temperature Loop – Heating Loop – Cooling Loop
Maintain temperature setpoint by changing the flow setpoint or modulating the heat source (valve/electric heat).

Flow Loop
Maintains flow setpoint by modulating the damper actuator.

Calibration

Air Velocity Sensor
Calibration of the controller’s internal air velocity sensor is periodically required to maintain accurate air velocity readings. Calibration may be set to take place automatically or manually.
Additional calibration is provided by driving the valve or damper fully closed or open, whenever they are commanded to 0 or 100 percent.
Fail-Mode Operation

If the RTS or the setpoint dial fails, then the controller operates using the last known temperature value.

Notes

1. If the temperature swings in the room are excessive, or if there is trouble in maintaining the setpoint, contact your local Siemens Industry representative for more information.

2. The TEC Terminal Box Controller, as shipped from the factory, keeps all associated equipment OFF. The controller and its equipment are released to application control at start up.

Application 2020 VAV Cooling Only

In Application 2020, the controller modulates the supply air damper of the terminal box for cooling. In order for it to work properly, the central air-handling unit must provide cool supply air.
Application 2021 VAV Cooling or Heating

In Application 2021, the controller modulates the supply air damper of the terminal box for cooling or heating. In order for it to work properly, the central air-handling unit must provide cool supply air in cooling mode and warm air during heating mode.
Application 2022 VAV with Electric Reheat or Baseboard Radiation

In Application 2022, the controller modulates the supply air damper of the terminal box for cooling and controls stages of electric reheat or baseboard radiation for heating. When in heating, the terminal box either maintains minimum airflow or modulates the supply air damper. In order for the terminal box to work properly, the central air-handling unit must provide supply air.
Application 2023 VAV with Hot Water Reheat

In Application 2023, the controller modulates the supply air damper of the terminal box for cooling and controls a hot water valve (or valves) for heating. When in heating, the terminal box either maintains minimum airflow or modulates the supply air damper. In order for the terminal box to work properly, the central air-handling unit must provide supply air for cooling.
Application 2024 VAV Series Fan Powered with Electric Reheat

In Application 2024, the controller modulates the supply air damper of the terminal box for cooling and controls stages of electric reheat for heating. When in heating, the terminal box either maintains minimum airflow or modulates the supply air damper. Application 2024 has a series fan for air circulation. In order for the terminal box to work properly, the central air-handling unit must provide supply air.
Application 2025 VAV Series Fan Powered with Hot Water Reheat

In Application 2025, the controller modulates the supply air damper of the terminal box for cooling and modulates a hot water valve for heating. When in heating, the terminal box either maintains minimum airflow or modulates the supply air damper. Application 2025 has a series fan for air circulation. In order for the terminal box to work properly, the central air-handling unit must provide supply air.
Application 2026 VAV Parallel Fan Powered with Electric Reheat

In Application 2026, the controller modulates the supply air damper of the terminal box for cooling and controls stages of electric reheat for heating. When in heating, the terminal box either maintains minimum airflow or modulates the supply air damper. Application 2026 has a parallel fan that re-circulates the room air in heating mode. In order for the terminal box to work properly, the central air-handling unit must provide supply air.
Application 2027 VAV Parallel Fan Powered with Hot Water Reheat

In Application 2027, the controller modulates the supply air damper of the terminal box for cooling and modulates a hot water valve for heating. When in heating, the terminal box either maintains minimum airflow or modulates the supply air damper. Application 2027 has a parallel fan that re-circulates the room air. In order for the terminal box to work properly, the central air-handling unit must provide supply air.

Application 2091 Slave Mode

Application 2091 is the slave mode application for the TEC (see Ordering Notes for product numbers). Slave mode is the default application that comes up when power is first applied to the controller. Slave mode provides no control. Its purpose is to allow the operator to perform equipment checkout before a control application is put into effect and to set some basic controller parameters (CTRL ADDRESS, APPLICATION, etc.).
Chapter 3 – Point Database

Chapter 3 presents a description of the TEC Terminal Box Controller point database, including point descriptors, point addresses, and a listing of applications in which each point is found.

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Address¹</th>
<th>Application</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTLR ADDRESS</td>
<td>01</td>
<td>All</td>
<td>Identifies the controller on the FLN trunk.</td>
</tr>
<tr>
<td>APPLICATION</td>
<td>02</td>
<td>All</td>
<td>Identification number of the program running in the controller.</td>
</tr>
<tr>
<td>ROOM TEMP</td>
<td>(04)²</td>
<td>All</td>
<td>Actual reading from the room temperature sensor.</td>
</tr>
<tr>
<td>HEAT.COOL</td>
<td>{05}</td>
<td>All except 2020, 2091</td>
<td>Current mode of operation for applications that can be in either a heating mode or a cooling mode.</td>
</tr>
<tr>
<td>DAY CLG STPT</td>
<td>06</td>
<td>All except 2091</td>
<td>The temperature setpoint in degrees that the controller maintains during day periods in cooling mode if a room temperature sensor setpoint dial is not present or is not used. See STPT DIAL.</td>
</tr>
<tr>
<td>NGT CLG STPT</td>
<td>08</td>
<td>All except 2091</td>
<td>The temperature setpoint in degrees that the controller maintains during the night periods in cooling mode.</td>
</tr>
<tr>
<td>DAY HTG STPT</td>
<td>07</td>
<td>All except 2020, 2091</td>
<td>The temperature setpoint in degrees that the controller maintains during day periods in heating mode if a room temperature sensor setpoint dial is not present or is not used. See STPT DIAL.</td>
</tr>
<tr>
<td>NGT HTG STPT</td>
<td>09</td>
<td>All except 2020, 2091</td>
<td>The temperature setpoint in degrees that the controller maintains during the night periods in heating mode.</td>
</tr>
<tr>
<td>RM STPT MIN</td>
<td>11</td>
<td>All except 2091</td>
<td>The minimum temperature setpoint in degrees that the controller can use from the setpoint dial. This overrides any temperature setpoint from the setpoint dial that falls below this minimum.</td>
</tr>
<tr>
<td>RM STPT MAX</td>
<td>12</td>
<td>All except 2091</td>
<td>The maximum temperature setpoint in degrees that the controller can use from the setpoint dial. This overrides any temperature setpoint from the setpoint dial that falls above this maximum.</td>
</tr>
<tr>
<td>RM STPT DIAL</td>
<td>{13}</td>
<td>All</td>
<td>The temperature setpoint in degrees from the room temperature sensor (not available on all temperature sensor models). This setpoint will be used for control in day mode (heating or cooling) when enabled by STPT DIAL.</td>
</tr>
<tr>
<td>STPT DIAL</td>
<td>14</td>
<td>All except 2091</td>
<td>YES indicates that there is a room setpoint dial on the room temperature sensor and it should be used as the temperature setpoint for control in day/occupied mode. NO indicates that the appropriate preset setpoint will be used as the temperature setpoint for control in day/occupied heating or cooling mode. Valid input: YES or NO.</td>
</tr>
<tr>
<td>AUX TEMP</td>
<td>{15}</td>
<td>All except 2021</td>
<td>Actual reading from a 100K Ω thermistor.</td>
</tr>
<tr>
<td>SUPPLY TEMP</td>
<td>{15}</td>
<td>2021</td>
<td>Actual reading from a 100K Ω thermistor. The controller uses this value to determine whether it is in heating or cooling mode.</td>
</tr>
<tr>
<td>FLOW START</td>
<td>16</td>
<td>All except 2020, 2021, 2091</td>
<td>Determines how the damper modulation will be sequenced while in heating mode. When HTG LOOPOUT is above this value, then FLOW STPT starts to increase.</td>
</tr>
<tr>
<td>Descriptor</td>
<td>Address1</td>
<td>Application</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>FLOW END</td>
<td>17</td>
<td>All except 2020, 2021, 2091</td>
<td>Determines how the damper modulation will be sequenced while in heating mode. When HTG LOOPOUT is below this value, then FLOW STPT starts to decrease.</td>
</tr>
<tr>
<td>WALL SWITCH</td>
<td>18</td>
<td>All</td>
<td>YES indicates that the controller is to monitor the status of a wall switch that is connected to UI 2. NO indicates that the controller will not monitor the status of a wall switch, even if one is connected. Valid input: YES or NO.</td>
</tr>
<tr>
<td>DI OVRD SW</td>
<td>{19}</td>
<td>All</td>
<td>Actual indication of the status of the override switch (not physically available on all temperature sensor models) at the room temperature sensor. ON indicates that the switch is being pressed. OFF indicates that the switch is released. Valid input: ON or OFF.</td>
</tr>
<tr>
<td>OVRD TIME</td>
<td>20</td>
<td>All except 2091</td>
<td>The amount of time in hours that the controller will operate in day/occupied mode when the override switch is pressed while the controller is in night/unoccupied mode.</td>
</tr>
<tr>
<td>NGT OVRD</td>
<td>{21}</td>
<td>All except 2091</td>
<td>Indicates the mode that the controller is operating in with respect to the override switch. NIGHT indicates that the switch has not been pressed and the override timer is not active. DAY indicates that the switch has been pressed and the override timer is active. The controller then uses a day mode temperature setpoint. This point is only in effect when DAY.NGT indicates night mode.</td>
</tr>
<tr>
<td>REHEAT START</td>
<td>22</td>
<td>All except 2020, 2021, 2091</td>
<td>Determines how the reheat modulation will be sequenced while in heating mode. When HTG LOOPOUT is above this value, then the reheat modulates upward.</td>
</tr>
<tr>
<td>REHEAT END</td>
<td>23</td>
<td>All except 2020, 2021, 2091</td>
<td>Determines how the reheat modulation will be sequenced while in heating mode. When HTG LOOPOUT is below this value, then the reheat modulates downward.</td>
</tr>
<tr>
<td>DI 2</td>
<td>{24}</td>
<td>All</td>
<td>Actual status of a contact connected to the controller at DI 2. ON indicates that the contact is closed; OFF indicates that the contact is open. If a wall switch is used, it is connected to DI 2. See WALL SWITCH.</td>
</tr>
<tr>
<td>DI 3</td>
<td>{25}</td>
<td>All except 2021</td>
<td>Actual status of a contact connected to the controller at Al 3/DI 3. ON indicates that the contact is closed; OFF indicates that the contact is open. When a contact is connected at DI 3, Al 3 is not available. See AUX TEMP.</td>
</tr>
<tr>
<td>SERIES ON</td>
<td>26</td>
<td>2024, 2025</td>
<td>When flow rises above this value, the series fan will turn ON.</td>
</tr>
<tr>
<td>SERIES ON</td>
<td>26</td>
<td>2026</td>
<td>This point is present, but not used in this application.</td>
</tr>
<tr>
<td>SERIES OFF</td>
<td>27</td>
<td>2024, 2025</td>
<td>When flow drops below this value and other conditions have been met, the series fan will turn OFF.</td>
</tr>
<tr>
<td>SERIES OFF</td>
<td>27</td>
<td>2026</td>
<td>This point is present, but not used in this application.</td>
</tr>
<tr>
<td>PARALLEL ON</td>
<td>28</td>
<td>2024</td>
<td>This point is present, but not used in this application.</td>
</tr>
<tr>
<td>PARALLEL ON</td>
<td>28</td>
<td>2026, 2027</td>
<td>When flow drops below this value and other conditions have been met, the parallel fan will turn ON.</td>
</tr>
<tr>
<td>DAY.NGT</td>
<td>{29}</td>
<td>All</td>
<td>Indicates the mode in which the controller is operating. Day temperature setpoints will be used in day mode. Night temperature setpoints will be used in night mode. This point is normally set by the field panel.</td>
</tr>
<tr>
<td>PARALLEL OFF</td>
<td>30</td>
<td>2024</td>
<td>This point is present, but not used in this application.</td>
</tr>
<tr>
<td>PARALLEL OFF</td>
<td>30</td>
<td>2026, 2027</td>
<td>When flow rises above this value, the parallel fan will turn ON.</td>
</tr>
<tr>
<td>Descriptor</td>
<td>Address</td>
<td>Application</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>CLG FLOW MIN</td>
<td>31</td>
<td>All except 2091</td>
<td>The minimum amount of air in CFM (LPS) to be supplied to the space in cooling mode.</td>
</tr>
<tr>
<td>CLG FLOW MAX</td>
<td>32</td>
<td>All except 2091</td>
<td>The maximum amount of air in CFM (LPS) to be supplied to the space in cooling mode.</td>
</tr>
<tr>
<td>HTG FLOW MIN</td>
<td>33</td>
<td>All except 2020, 2091</td>
<td>The minimum amount of air in CFM (LPS) to be supplied to the space in heating mode.</td>
</tr>
<tr>
<td>HTG FLOW MAX</td>
<td>34</td>
<td>All except 2020, 2091</td>
<td>The maximum amount of air in CFM (LPS) to be supplied to the space in heating mode.</td>
</tr>
<tr>
<td>AIR VOLUME</td>
<td>{35}</td>
<td>All</td>
<td>Actual amount of air in CFM (LPS) currently passing through the air velocity sensor.</td>
</tr>
<tr>
<td>FLOW COEFF</td>
<td>36</td>
<td>All</td>
<td>Calibration factor for the airflow sensor.</td>
</tr>
<tr>
<td>MTR3 COMD</td>
<td>{37}</td>
<td>2020, 2021, 2022, 2091</td>
<td>The value to which the Motor 3 actuator is commanded in percent of full value.</td>
</tr>
<tr>
<td>VLV2 COMD</td>
<td>{37}</td>
<td>2023</td>
<td>The value to which the valve 2 actuator is commanded in percent of full travel for applications using a second water valve.</td>
</tr>
<tr>
<td>MTR3 POS</td>
<td>{38}</td>
<td>2020, 2021, 2022, 2091</td>
<td>The current position of the Motor 3 actuator in percent of full travel. This value is calculated based on motor run time.</td>
</tr>
<tr>
<td>VLV2 POS</td>
<td>{38}</td>
<td>2023</td>
<td>The current position of Valve 2 in percent of full travel. This value is calculated based on valve run time.</td>
</tr>
<tr>
<td>MTR3 TIMING</td>
<td>39</td>
<td>All except 2024, 2025, 2026</td>
<td>The time, in seconds, required for the Motor 3 actuator to travel from the full closed position to the full open position.</td>
</tr>
<tr>
<td>DO 1</td>
<td>{41}</td>
<td>All</td>
<td>Digital output 1 controls a 24 Vac load with an ON or OFF status. If Motor 1 is enabled, DO 1 is coupled with DO 2 to control an actuator.</td>
</tr>
<tr>
<td>DO 2</td>
<td>{42}</td>
<td>All</td>
<td>Digital output 2 controls a 24 Vac load with an ON or OFF status. If Motor 1 is enabled, DO 2 is coupled with DO 1 to control an actuator.</td>
</tr>
<tr>
<td>DO 3</td>
<td>{43}</td>
<td>All except 2022, 2024, 2026</td>
<td>Digital output 3 controls a 24 Vac load with an ON or OFF status. If Motor 2 is enabled, DO 3 is coupled with DO 4 to control an actuator.</td>
</tr>
<tr>
<td>HEAT STAGE 1</td>
<td>{43}</td>
<td>2022, 2024, 2026</td>
<td>This point is DO 3 in applications with electric reheat. This digital output controls the contact for the first stage of heating and has a status of ON or OFF.</td>
</tr>
<tr>
<td>DO 4</td>
<td>{44}</td>
<td>All except 2022, 2024, 2026</td>
<td>Digital output 4 controls a 24 Vac load with an ON or OFF status. If Motor 2 is enabled, DO 4 is coupled with DO 3 to control an actuator.</td>
</tr>
<tr>
<td>HEAT STAGE 2</td>
<td>{44}</td>
<td>2022, 2024, 2026</td>
<td>This point is DO 4 in applications with electric reheat. This digital output controls the contact for the second stage of heating and has a status of ON or OFF.</td>
</tr>
<tr>
<td>DO 5</td>
<td>{45}</td>
<td>2020, 2021, 2023, 2091</td>
<td>Digital output 5 controls a 24 Vac load with an ON or OFF status. If Motor 3 is enabled, DO 5 is coupled with DO 6 to control an actuator.</td>
</tr>
<tr>
<td>HEAT STAGE 3</td>
<td>{45}</td>
<td>2022, 2024, 2026</td>
<td>This point is a digital output used to control the contact for the third stage of heating and has a status of ON or OFF.</td>
</tr>
<tr>
<td>Descriptor</td>
<td>Address</td>
<td>Application</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>DO 6</td>
<td>{46}</td>
<td>All except 2024, 2025, 2026, 2027</td>
<td>Digital output 6 controls a 24 Vac load with an ON or OFF status. If Motor 3 is enabled, DO 6 is coupled with DO 5 to control an actuator. In applications with CAL MODULE set to YES, this digital output controls the Autozero Module to calibrate the controller's internal air velocity transducer.</td>
</tr>
<tr>
<td>FAN</td>
<td>{46}</td>
<td>2024, 2025, 2026, 2027</td>
<td>This point is a digital output used to control the fan. ON indicates that the DO is energized; OFF indicates that the DO is de-energized.</td>
</tr>
<tr>
<td>DMPR COMD</td>
<td>{48}</td>
<td>All except 2091</td>
<td>The value to which the damper motor is commanded in percent of full travel.</td>
</tr>
<tr>
<td>MTR1 COMD</td>
<td>{48}</td>
<td>2091</td>
<td>The value to which the Motor 1 actuator is commanded in percent of full travel.</td>
</tr>
<tr>
<td>DMPR POS</td>
<td>{49}</td>
<td>All except 2091</td>
<td>The current position of the damper motor in percent of full travel. This value is calculated based on motor run time.</td>
</tr>
<tr>
<td>MTR1 POS</td>
<td>{49}</td>
<td>2901</td>
<td>The current position of Motor 1 in percent of full travel. This value is calculated based on motor run time. See MTR1 TIMING.</td>
</tr>
<tr>
<td>MTR1 TIMING</td>
<td>51</td>
<td>All</td>
<td>The time, in seconds, required for the Motor 1 actuator to travel from full closed to the full open position.</td>
</tr>
<tr>
<td>MTR2 COMD</td>
<td>{52}</td>
<td>2020, 2021, 2091</td>
<td>The value to which the Motor 2 actuator is commanded in percent of full travel (for use as an auxiliary slave point).</td>
</tr>
<tr>
<td>VLV COMD</td>
<td>{52}</td>
<td>2025, 2027</td>
<td>The value to which the valve actuator is commanded in percent of full travel for applications using a water valve.</td>
</tr>
<tr>
<td>VLV1 COMD</td>
<td>{52}</td>
<td>2023</td>
<td>The value to which the valve 1 actuator is commanded in percent of full travel for applications using a water valve.</td>
</tr>
<tr>
<td>MTR2 POS</td>
<td>{53}</td>
<td>2020, 2021, 2091</td>
<td>The current position of the Motor 2 actuator in percent of full travel (for use as an auxiliary slave point). This value is calculated based on motor run time. See MTR2 TIMING.</td>
</tr>
<tr>
<td>VLV POS</td>
<td>{53}</td>
<td>2025</td>
<td>The current position of the valve in percent of full travel for applications using a water valve. This value is calculated based on motor run time.</td>
</tr>
<tr>
<td>VLV1 POS</td>
<td>{53}</td>
<td>2023</td>
<td>The current position of valve 1 in percent of full travel for applications using a water valve. This value is calculated based on motor run time.</td>
</tr>
<tr>
<td>MTR2 TIMING</td>
<td>55</td>
<td>All except 2022, 2024, 2026</td>
<td>The time, in seconds, required for the Motor 2 actuator to travel from full closed to the full open position.</td>
</tr>
<tr>
<td>DMPR ROT ANG</td>
<td>56</td>
<td>All except 2091</td>
<td>The number of degrees the damper is free to travel.</td>
</tr>
<tr>
<td>DPR1 ROT ANG</td>
<td>56</td>
<td>2091</td>
<td>The number of degrees that damper 1 is free to travel.</td>
</tr>
<tr>
<td>DPR2 ROT ANG</td>
<td>57</td>
<td>2091</td>
<td>The number of degrees that damper 2, the hot duct damper, is free to travel.</td>
</tr>
<tr>
<td>MTR SETUP</td>
<td>58</td>
<td>All</td>
<td>The configuration setup code for Motors 1 and 2. This enables the motors individually and sets each motor to be either direct or reverse acting. Note: When a motor is enabled, its associated DOs are enabled.</td>
</tr>
<tr>
<td>DO DIR.REV</td>
<td>59</td>
<td>All</td>
<td>The configuration setup code for DOs. Allows the DOs to be direct or reverse acting (enabled equals energized or disabled equals de-energized).</td>
</tr>
<tr>
<td>Descriptor</td>
<td>Address(^1)</td>
<td>Application</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>EHEAT FLOW</td>
<td>60</td>
<td>2022</td>
<td>The flow required before the electric heat will be enabled.</td>
</tr>
<tr>
<td>COOL TEMP</td>
<td>61</td>
<td>2021</td>
<td>The discharge air temperature where the controller will switch from heating to cooling mode. Used only in applications with SUPPLY TEMP.</td>
</tr>
<tr>
<td>HEAT TEMP</td>
<td>62</td>
<td>2021</td>
<td>The discharge air temperature where the controller will switch from cooling to heating mode. Used only in applications with SUPPLY TEMP.</td>
</tr>
<tr>
<td>CLG P GAIN</td>
<td>63</td>
<td>All except 2091</td>
<td>The proportional gain value for the cooling temperature control loop.</td>
</tr>
<tr>
<td>CLG I GAIN</td>
<td>64</td>
<td>All except 2091</td>
<td>The integral gain value for the cooling temperature control loop.</td>
</tr>
<tr>
<td>CLG D GAIN</td>
<td>65</td>
<td>All except 2091</td>
<td>The derivative gain value for the cooling temperature control loop.</td>
</tr>
<tr>
<td>CLG BIAS</td>
<td>66</td>
<td>All except 2091</td>
<td>The biasing of the cooling temperature control loop. See CLG LOOPOUT.</td>
</tr>
<tr>
<td>HTG P GAIN</td>
<td>67</td>
<td>All except 2020, 2091</td>
<td>The proportional gain value for the heating temperature control loop.</td>
</tr>
<tr>
<td>HTG I GAIN</td>
<td>68</td>
<td>All except 2020, 2091</td>
<td>The integral gain value for the heating temperature control loop.</td>
</tr>
<tr>
<td>HTG D GAIN</td>
<td>69</td>
<td>All except 2020, 2091</td>
<td>The derivative gain value for the heating temperature control loop.</td>
</tr>
<tr>
<td>HTG BIAS</td>
<td>70</td>
<td>All except 2020, 2091</td>
<td>The biasing of the heating temperature control loop. See LOOPOUT.</td>
</tr>
<tr>
<td>FLOW P GAIN</td>
<td>71</td>
<td>All except 2091</td>
<td>The proportional gain value for the flow control loop.</td>
</tr>
<tr>
<td>FLOW I GAIN</td>
<td>72</td>
<td>All except 2091</td>
<td>The integral gain value for the flow control loop.</td>
</tr>
<tr>
<td>FLOW D GAIN</td>
<td>73</td>
<td>All except 2091</td>
<td>The derivative gain value for the flow control loop.</td>
</tr>
<tr>
<td>FLOW BIAS</td>
<td>74</td>
<td>All except 2091</td>
<td>The biasing of the flow control loop.</td>
</tr>
<tr>
<td>FLOW</td>
<td>{75}</td>
<td>All except 2091</td>
<td>Indicates the amount of air currently passing the air velocity sensor. The value is calculated as a percentage based on where the value of AIR VOLUME is in the range between 0 and CTL FLOW MAX.</td>
</tr>
<tr>
<td>CTL FLOW MIN</td>
<td>{76}</td>
<td>All except 2091</td>
<td>The active minimum flow used as a limit for the flow control loop. This value is the same as CLG FLOW MIN if the controller is in cooling mode, or is the same as HTG FLOW MIN if the controller is in heating mode, unless it is overridden.</td>
</tr>
<tr>
<td>CTL FLOW MAX</td>
<td>{77}</td>
<td>All except 2091</td>
<td>The active maximum flow used as a limit for the flow control loop. This value is the same as CLG FLOW MAX if the controller is in cooling mode, or is the same as HTG FLOW MAX if the controller is in heating mode unless, it is overridden.</td>
</tr>
<tr>
<td>CTL TEMP</td>
<td>{78}</td>
<td>All except 2091</td>
<td>The temperature used as input for the temperature control loops. This value is the same as the value in ROOM TEMP unless it is overridden.</td>
</tr>
<tr>
<td>CLG LOOPOUT</td>
<td>{79}</td>
<td>All except 2091</td>
<td>The cooling temperature control loop output value in percent.</td>
</tr>
<tr>
<td>Descriptor</td>
<td>Address</td>
<td>Application</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>HTG LOOPOUT</td>
<td>(80)</td>
<td>All except 2020, 2091</td>
<td>The heating temperature control loop output value in percent.</td>
</tr>
<tr>
<td>AVG HEAT OUT</td>
<td>(81)</td>
<td>2022, 2024, 2026</td>
<td>This point is used to determine what stages of electric heat are used for a given loop output value. The ranges for the value are determined by the number of stages used: 0 to 100 for 1 stage of electric heat, 0 to 200 for 2 stages of electric heat, and 0 to 300 for 3 stages of electric heat. With electric heat, this value is equal to: HTG LOOPOUT \times STAGE COUNT.</td>
</tr>
<tr>
<td>STAGE MAX</td>
<td>82</td>
<td>2022, 2024, 2026</td>
<td>The value, in percent, which the heating loop must exceed for the electric heat to be ON for the full duty cycle (STAGE TIME).</td>
</tr>
<tr>
<td>STAGE FAN</td>
<td>83</td>
<td>2025, 2027</td>
<td>The valve must be opened greater than this value before the fan will turn ON.</td>
</tr>
<tr>
<td>STAGE MIN</td>
<td>83</td>
<td>2022, 2024, 2026</td>
<td>The value, in percent, which the heating loop must go below for the electric heat to be OFF for the full duty cycle (STAGE TIME).</td>
</tr>
<tr>
<td>DMPR STATUS</td>
<td>(84)</td>
<td>2020, 2021, 2022, 2023</td>
<td>This point is used only when CAL MODULE set to YES. It readjusts the damper position if the command value is not equal to the actual position of the damper. CAL indicates that the damper is operating normally. RECAL indicates that the damper position was adjusted (recalibrated) by 25% because the desired airflow was not obtainable under its current status.</td>
</tr>
<tr>
<td>SWITCH LIMIT</td>
<td>85</td>
<td>All except 2020, 2021, 2091</td>
<td>The active temperature control loop output must be less than this value to switch between cooling mode and heating mode. Actual switchover depends on SWITCH DBAND being exceeded and is subject to SWITCH TIME being expired.</td>
</tr>
<tr>
<td>SWITCH TIME</td>
<td>86</td>
<td>All except 2020, 2021, 2091</td>
<td>The time, in minutes, before the heat/cool mode can change over when the other parameters are appropriate.</td>
</tr>
<tr>
<td>CAL MODULE</td>
<td>87</td>
<td>All except 2024, 2025, 2026, 2027</td>
<td>YES indicates that the Autozero Modules are enabled to calibrate the air velocity transducers. The dampers will not be used for calibration. NO indicates that Autozero Modules are disabled and that the air velocity transducers will be calibrated by closing the dampers. Valid input: YES or NO.</td>
</tr>
<tr>
<td>STAGE COUNT</td>
<td>88</td>
<td>2022, 2024, 2026</td>
<td>The number of electric heating stages used by the application. DOs associated with unused stages may be used as spare DOs.</td>
</tr>
<tr>
<td>VALVE COUNT</td>
<td>88</td>
<td>2023</td>
<td>The number of heating valves available.</td>
</tr>
<tr>
<td>STAGE TIME</td>
<td>89</td>
<td>2022, 2024, 2026</td>
<td>The cycle time in minutes for the electric reheat stages. For example, if there are three stages of electric heat and STAGE TIME = 10 minutes, STAGE COUNT = 3, and AVG HEAT OUT = 150% then, Stage 1 is ON for 10 minutes (100% of the time), Stage 2 is ON for 5 minutes (50% of 10 minutes) and OFF for 5 minutes, and Stage 3 is OFF.</td>
</tr>
<tr>
<td>SWITCH DBAND</td>
<td>90</td>
<td>All except 2020, 2021, 2091</td>
<td>The temperature range in degrees which is compared to the difference between CTL TEMP and CTL STPT. The difference must exceed this value for temperature control mode to change over. Changeover is also subject to the active temperature control loop output being below SWITCH LIMIT (Point 85) and SWITCH TIME being expired.</td>
</tr>
<tr>
<td>TOTAL VOLUME</td>
<td>(91)</td>
<td>All except 2091</td>
<td>The total amount of air delivered to a space in CF (L) since the last time the point was reset or rolled over.</td>
</tr>
</tbody>
</table>
Chapter 3 – Point Database

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Address</th>
<th>Application</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL STPT</td>
<td>{92}</td>
<td>All except 2091</td>
<td>The actual setpoint value being used as input for the active temperature control loop.</td>
</tr>
<tr>
<td>FLOW STPT</td>
<td>{93}</td>
<td>All except 2091</td>
<td>The setpoint of the flow control loop.</td>
</tr>
<tr>
<td>CAL AIR</td>
<td>{94}</td>
<td>All</td>
<td>YES commands the controller to go through calibration sequence for the air velocity transducers. YES is also displayed when the calibration sequence is started automatically. CAL AIR automatically returns to NO after the calibration sequence is completed. Valid input: YES or NO.</td>
</tr>
<tr>
<td>CAL SETUP</td>
<td>95</td>
<td>All</td>
<td>The configuration setup code for the calibration sequence options.</td>
</tr>
<tr>
<td>CAL TIMER</td>
<td>96</td>
<td>All</td>
<td>Time interval, in hours, between the calibration sequence initiations if a timed calibration option is selected in CAL SETUP.</td>
</tr>
<tr>
<td>DUCT AREA</td>
<td>97</td>
<td>All</td>
<td>Area, in square feet (square meters), of the duct where the air velocity sensor is located. This is a calculated value (calculated by the field panel or computer being used) that depends on duct shape and size. It is used in calculating all points in units of CFM, CF, LPS and L. Valid input: .025 ft² (.002 m²) through 6.375 ft² (.5923 m²).</td>
</tr>
<tr>
<td>LOOP TIME</td>
<td>98</td>
<td>All except 2091</td>
<td>The time, in seconds, between control loop calculations.</td>
</tr>
<tr>
<td>ERROR STATUS</td>
<td>{99}</td>
<td>All</td>
<td>The status code indicating any errors detected during controller power up. A status of 0 indicates there are no problems.</td>
</tr>
</tbody>
</table>

1) Points not listed are not used in this application.

2) Point numbers that appear in brackets () may be unbundled at the field panel.
Chapter 4 – Basic Service and Maintenance

This chapter describes basic service and maintenance measures you can take when using a TEC.

You may want to contact your local Siemens Industry representative if a problem occurs or you have any questions about the controller.

NOTE:
When troubleshooting, record the problem and what actions were performed immediately before the problem occurred. Being able to describe the problem in detail is important should you need assistance from your local Siemens Industry representative.

Basic Service Information

Always remove power to the TEC when installing or replacing it. Since the controller does not have a power switch, the recommended method of removing power to a locally powered controller is to turn OFF the power to the 24 Vac transformer. The recommended method of removing power to a controller on a power cable (even to service a single controller) is to turn OFF the power at the transformer.

NOTE:
When removing power to a controller to perform maintenance or service, make sure that the person in charge of the facility is aware of this and that appropriate steps are taken to keep the building in control.

Never remove the cover from the TEC. There are no serviceable parts inside. If a problem is found with this device, contact your local Siemens Industry representative for replacement. An anti-static wrist strap is recommended when installing or replacing controllers.

Preventive Maintenance

Most controller components are designed so that, under normal circumstances, they do not require preventive maintenance. Periodic inspections, voltage checks, and point checks are normally not required. The rugged design makes most preventive maintenance unnecessary. However, devices that are exposed to dusty or dirty environments may require periodic cleaning to function properly.
Safety Features

The controller board stores the controller's address, applications, and point values. In the event of a power failure or a reset, these values are retrieved from the controller's permanent memory and are used by the controller unless overridden by a field panel. If one of the following conditions occurs, the controller will activate safety features present in its fail-safe mode.

- Sensor failure.
- Loss of power. Upon controller power loss, communication with the controller is also lost. The controller will appear as failed (*F*) at the field panel.
Glossary
This glossary contains the collected terms and acronyms that are used in Siemens BACnet PTEC and TEC Controllers. For definitions of point database descriptors, see Chapter 3 - Point Database, in this manual.

airflow
Rate at which a volume of air moves through a duct. Usually expressed in cubic feet per minute (cfm) or liters per second (lps).

algorithm
Mathematical formula and control logic that uses varying inputs to calculate an output value.

AVS
Air Velocity Sensor. An electronic device that converts differential pressure from a pilot tube or multi-point pickup to an analog rate of fluid flow (air velocity in fpm, m/s) to provide calculations of air volume rate (cfm, lps) in a duct. The air velocity sensor may be an external device or an internal component of a controller.

centralized control
Type of control offered by a controller that is connected by means of Field Level Network (FLN).

cfm
Cubic Feet per Minute.

Chilled Beam
A cooling device that provides a cooling system by taking care of both the sensible and latent heat gains of a room in a single package by a series of chilled water coils mounted near or in the ceiling. Coupled with a CV or VAV terminal ventilation system, a chilled beam induces air movement over the coil in the way that it discharges fresh air into the room. This allows for both fresh air and cooling to be taken care of at the same time.

control loop
An algorithm, such as PI or PID, that is used to control an output based on a setpoint and an input reading from a sensor.

CO₂
Carbon dioxide, a naturally occurring chemical compound composed of two oxygen atoms and a single carbon atom. Among other production sources, carbon dioxide is produced as the result of breathing of humans and animals and can therefore be an indirect indication of the concentration of humans in a zone.

CV
Constant air volume. Ventilation system that provides a fixed air volume supplied to and exhausted from the rooms served. The fixed volume may be different during occupied and unoccupied times.
Demand Control Ventilation

A control algorithm that provides for the control or reduction of outdoor air intake below design rates when the actual occupancy of spaces served by the system is at less than design occupancy.

DCV

Demand Control Ventilation.

DDC

Direct Digital Control.

Direct digital control

The automated control of a condition or process by a digital device (computer).

DO

Digital Output. Physical output point that sends a two-state signal (ON/OFF, OPEN/CLOSED, YES/NO).

English units

The foot-pound-second system of units for weights and measurements.

equipment controller

FLN device, such as a BACnet PTEC or ATEC, that provides individual room or mechanical equipment control or additional point capacity to a field panel.

field panel

A DDC control device containing a microprocessor for centralized control and monitoring of system components and equipment controllers.

Floating Control

The combination of a modulating controlled device with the use of a pair of two position outputs. The control signal will either activate one or the other outputs to drive the controlled device towards its open or closed position. When both outputs are off, the controlled device maintains its last position. Also referred to as tri-state control.

FLN

Field Level Network. Network consisting of equipment controllers, FLN end devices, fume hoods, etc.

lps

Liters per Second.

loopout

Output of the control loop expressed as a percentage.

Heat pump

An HVAC device used for both space heating and space cooling. When a heat pump is used for heating, it employs the same basic refrigeration-type cycle used by an air conditioner but in the opposite direction, releasing heat into the conditioned-space rather than the surrounding environment. In this use, heat pumps generally draw heat from the cooler external air or from the ground.
HMI
Human Machine Interface. Terminal and its interface program that allows you to communicate with a field panel or equipment controller.

Occupancy sensor
A control device that detects presence of people in a space by using infrared or ultrasonic technology. Occupancy sensors are used to save energy by controlling lighting and temperature and, along with CO2 sensors, to provide control input of demand control ventilation (DCV) algorithms.

override switch
Button on a room temperature sensor that an occupant can press to change the status of a room from unoccupied to occupied (or from night to day) for a predetermined time.

pressure dependent
Variable Air Volume (VAV) room temperature control system in which the temperature drives a damper such that the air volume delivered to the space at any damper position is dependent on the duct static pressure.

pressure independent
Variable Air Volume (VAV) room temperature control system in which the temperature drives an airflow setpoint such that the air volume delivered to the space is independent of variations in the duct static pressure.

PID
Proportional, Integral, Derivative.

RTS
Room Temperature Sensor.

setpoint
Data point that stores a value such as a temperature setting. In contrast, points that monitor inputs, such as temperature, report actual values.

SI units
Systeme International d'Unites. The international metric system.

slave mode
Default application that displays when power is first applied to an equipment controller. No control action is initiated in the slave mode. Input and output points in the slave application can be monitored or controlled by a field panel (or by PPCL in a BACnet PTEC controller).

stand-alone control
Type of control offered by a controller that is providing independent DDC control to a space.

Terminal Equipment Controller
Siemens Industry, Inc. product family of equipment controllers that house the applications software used to control terminal units, such as heat pumps, VAV terminal boxes, fan coil units, unit ventilators, etc.
UI
Universal Input. Can be used as an AI or DI. An AI input is a point receiving a signal that represents a condition that has more than two states. A DI input is a physical input point that receives a two-state signal.

unbundle
Term used to describe the entering of a point that resides in a controller's database into the field panel's database so that it can be monitored and controlled from the field panel.

VAV
Variable air volume. Ventilation system that changes the amount of air supplied to and exhausted from the rooms served.
Index

A
actuators, 12
damper actuator, 12
valve actuator, 12
algorithm, 32
application, slave mode
overview, 22
applications
baseboard radiation, 7
calibration, 13, 25
control loops, 13
control temperature setpoints, 13
day/night mode, 13
electric reheat:stage 1, 7, 7
electric reheat:stage 2, 7, 7
fail-safe operation, 14
hot water reheat, 7, 7, 7
night mode override switch, 13
notes, 14, 14
ordering notes, 9

B
basic operation, 13
Basic Sanity Test (BST), 11
basic service information, 30
BST LED, 11

C
centralized control, 32
Chilled Beam, 32
CO2, 32
control loop, 32
controller
LEDs/LED indicators, 11
Terminal Box (VAV) Controller, 7
Terminal Equipment Controller, 7
CV, 32

D
DCV, 33
DDC, 33
Demand Control Ventilation, 33
Direct digital control, 33
Direct Digital Control (DDC), 7, 13
DO, 33

E
English units, 33
equipment controller, 33, 34

F
fail-safe operation, 14
fan, 7, 7, 7, 7
field panel, 7
FLN, 33
Floating Control, 33
Floor Level Network (FLN), 10

H
hardware
actuators, 12
fan, 7, 7, 7, 7
LEDs, 11
relay module, 12
temperature sensors, 11, 11

L
LED, 11
Light Emitting Diodes (LEDs), 11
BST, 11
RX and TX, 11
loopout, 33

M
mounting bracket, 7

O
override switch, 34, 34

P
PID, 34
point database
overview, 23
preventive maintenance, 30

R
related equipment, 12
relay module, 12
RTS, 34
RX LED, 11

S
safety features, 31
service information, basic, 30
setpoint, 34
dial, 14
SI units, 34
slave mode, 34
slave mode application, 22
stand-alone, 7
stand-alone control, 34
standard applications, 7
static discharge, 30

T
temperature sensor, 11
temperature sensors
duct temperature sensor, 11, 11
room temperature sensor, 11
RTS, 11
Terminal Box (VAV) Controller
applications: standard, 7
product overview, 7
troubleshooting
basic service information, 30
TX LED, 11

U
unbundle, 35
units, English, 33