Synco™ 700
Universalregler RMU710B, RMU720B, RMU730B
inkl. Erweiterungsmodule RMZ785, RMZ787 und RMZ788
Basisdokumentation
Inhaltsverzeichnis

1 Übersicht ..9
1.1 Gerätesortiment ..9
1.2 Synco™ 700-Topologie ... 10
1.3 Gerätekombinationen ..11
1.4 Produktdokumentationen .. 12
1.5 Leistung ..13
1.6 Applikationskonzept ..15
1.7 Wichtige Hinweise ...16

2 Bedienung .. 17
2.1 Bedienung ohne Bediengerät .. 17
2.2 Bedienung mit Bediengerät ... 18

3 Philosophie der Grundtypen .. 21
3.1 Grundtyp A, Lüftungsregler .. 21
3.2 Grundtyp P, Primärluftaufbereitung ... 22
3.3 Grundtyp C, Kaltwasservorregelung ... 23
3.4 Grundtyp U, Universalregler .. 24

4 Inbetriebnahme .. 25
4.1 Einstieg in die Inbetriebnahme ..25
4.2 Grundkonfiguration ..26
4.3 Nutzung dieser Basisdokumentation bei der Inbetriebnahme 27
4.4 Verdrahtungstest .. 28
4.5 Ausstieg aus der Inbetriebnahme ...28
4.6 Datensicherung ... 29
4.7 Ausstieg aus der Passwortebene ...29
4.8 Geräte-Informationen ... 30
4.9 Kennzeichnung eines Eingriffs ..30

5 Allgemeine Einstellungen ... 31
5.1 Zeit und Datum .. 31
5.2 Wahl der Sprache .. 34
5.3 Wahl der Temperatur-Einheit .. 34
5.4 Display-Kontrast am Bediengerät ... 34
5.5 Text-Eingabe ... 34

6 Betriebsarten ... 36
6.1 Raum- und Anlagenbetriebsarten ... 36
6.2 Wirksame Sollwerte in Abhängigkeit der Anlagenbetriebsart (Grundtyp A) 38
6.3 Wirksame Ventilatorstufen in Abhängigkeit der Anlagenbetriebsart (Grundtyp A) ..39
6.4 Betriebsartenblock ..41
6.5 Raumbetriebsartwahl über digitale Eingänge (Grundtyp A, U)42
6.6 Anlagenbetriebsartwahl über Anforderungseingang (Grundtyp P, C)45
6.7 Raumbetriebsartwahl (Grundtyp A, U) ..46
6.8 Anlagenbetriebsartwahl (Grundtyp A, P, C, U) ...47
6.9 Schaltuhrbetriebsarten \(\Phi, \Psi, \Omega \) (Grundtyp A, P, C, U)49
6.10 Ferien / Sondertage (Grundtyp A, P, C, U) ...52
6.11 Raumbetriebsart-Relais (Grundtyp A, P, C, U) ...55
6.12 Anlagenbetriebsart-Relais (Grundtyp A, P, C, U) ..57
6.13 Raumregelungskombinationen (Grundtyp A) ..58
6.14 Prioritäten der Betriebsarten ..61
6.15 Wirkungen der Betriebsarten (Beispiele) ..62
7 Schaltuhr 2 (Ein/Aus) ..63
7.1 Aktivierung des Blocks und Einstellungen ..63
7.2 Kommunikation ..64
7.3 Einträge ..64
7.4 Zuordnung von Texten ..65
7.5 Betriebsschalter ..65
7.6 Fehlerbehandlung ..65
8 Eingänge ..66
8.1 Universelle Eingänge ...66
8.2 Analoge Eingänge ...70
8.3 Spezielle analoge Eingänge ..73
8.4 Aussentemperatur ...74
8.5 Raumtemperatur ...76
8.6 Digitale Eingänge ...79
8.7 Fernsollwertgeber absolut ...80
8.8 Fernsollwertgeber relativ ...82
8.9 Impuls ...84
8.10 Zuordnung von Texten ..84
9 Datenerfassung ...85
9.1 Trend ..85
9.2 Zähler ..88
10 Aggregate ...91
10.1 Ventilator (Grundtyp A, P) ..91
10.2 Pumpe ...108
10.3 Stetiger Ausgang ...121
10.4 Wärmerückgewinner (Grundtyp A, P) ...123
<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5</td>
<td>Mischluftklappe (Grundtyp A, P)</td>
<td>132</td>
</tr>
<tr>
<td>10.6</td>
<td>Linear/Binär-Stufenschalter (1..3)</td>
<td>139</td>
</tr>
<tr>
<td>10.7</td>
<td>Variabler Stufenschalter (4..5)</td>
<td>148</td>
</tr>
<tr>
<td>10.8</td>
<td>Logik</td>
<td>153</td>
</tr>
<tr>
<td>11</td>
<td>Temperaturregler Lüftung (Grundtyp A)</td>
<td>159</td>
</tr>
<tr>
<td>11.1</td>
<td>Allgemeines</td>
<td>159</td>
</tr>
<tr>
<td>11.2</td>
<td>Übersicht der Regelungsarten</td>
<td>160</td>
</tr>
<tr>
<td>11.3</td>
<td>Zulufttemperaturregulierung</td>
<td>164</td>
</tr>
<tr>
<td>11.4</td>
<td>Raum- oder Ablufttemperaturregulierung</td>
<td>165</td>
</tr>
<tr>
<td>11.5</td>
<td>Raum- oder Ablufttemperaturregulierung mit Zuluftbegrenzung</td>
<td>166</td>
</tr>
<tr>
<td>11.6</td>
<td>Raum/Zuluft- oder Abluft/Zuluft-Kaskadenregelung</td>
<td>168</td>
</tr>
<tr>
<td>11.7</td>
<td>Kaskaden-/Konstantregelung mit Umschaltung via Kask./Konst.-Umschalteingang</td>
<td>171</td>
</tr>
<tr>
<td>11.8</td>
<td>Raumregelungskombinationen mit Heizungsregler</td>
<td>172</td>
</tr>
<tr>
<td>11.9</td>
<td>Sommer-/Winterkompensation</td>
<td>175</td>
</tr>
<tr>
<td>11.10</td>
<td>Sollwertbegrenzungen</td>
<td>176</td>
</tr>
<tr>
<td>12</td>
<td>Zulufttemperaturregler, bedarfsgeführt (Grundtyp P)</td>
<td>177</td>
</tr>
<tr>
<td>12.1</td>
<td>Allgemeines</td>
<td>177</td>
</tr>
<tr>
<td>12.2</td>
<td>Aktivieren der Funktion</td>
<td>177</td>
</tr>
<tr>
<td>12.3</td>
<td>Bedarfsgeführter Anlagenbetrieb</td>
<td>178</td>
</tr>
<tr>
<td>12.4</td>
<td>Bedarfsgeführte Zulufttemperaturregulierung</td>
<td>179</td>
</tr>
<tr>
<td>12.5</td>
<td>Fehlerbehandlung</td>
<td>181</td>
</tr>
<tr>
<td>13</td>
<td>Vorlauftemperaturregler, bedarfsgeführt (Grundtyp C)</td>
<td>182</td>
</tr>
<tr>
<td>13.1</td>
<td>Allgemeines</td>
<td>182</td>
</tr>
<tr>
<td>13.2</td>
<td>Aktivieren der Funktion</td>
<td>182</td>
</tr>
<tr>
<td>13.3</td>
<td>Kaltwasser-Vorregelung</td>
<td>183</td>
</tr>
<tr>
<td>13.4</td>
<td>Vorregelung für 2-Rohr-System (H/K) mit Sommer/Winter-Umschaltung</td>
<td>183</td>
</tr>
<tr>
<td>13.5</td>
<td>Sollwerte</td>
<td>184</td>
</tr>
<tr>
<td>13.6</td>
<td>Anforderungssignale</td>
<td>185</td>
</tr>
<tr>
<td>13.7</td>
<td>Anwendungsbeispiele</td>
<td>187</td>
</tr>
<tr>
<td>13.8</td>
<td>Fehlerbehandlung</td>
<td>188</td>
</tr>
<tr>
<td>14</td>
<td>Universalregler (Grundtyp A, P, C, U)</td>
<td>189</td>
</tr>
<tr>
<td>14.1</td>
<td>Allgemeines</td>
<td>189</td>
</tr>
<tr>
<td>14.2</td>
<td>Aktivieren der Funktion</td>
<td>189</td>
</tr>
<tr>
<td>15</td>
<td>Sequenzregler</td>
<td>192</td>
</tr>
<tr>
<td>15.1</td>
<td>Aufbau des Sequenzreglers</td>
<td>192</td>
</tr>
<tr>
<td>15.2</td>
<td>Allgemeinbegrenzer</td>
<td>197</td>
</tr>
<tr>
<td>15.3</td>
<td>Sequenzbegrenzer</td>
<td>200</td>
</tr>
<tr>
<td>15.4</td>
<td>Sequenzsperrung nach TA</td>
<td>202</td>
</tr>
</tbody>
</table>
15.5 Sequenzsperrung nach Heizen/Kühlen Umschaltung.................................203
15.6 Universalschiebung..203
15.7 Abweichungsmeldung.. 204
15.8 Regelungs-Timeout..205
15.9 Zuordnung von Texten.. 205

16 Luftqualitätsregler (Grundtyp A, P)...206
16.1 Aktivieren der Funktion ...206
16.2 Öffnen der Aussenluftklappe (Grundtyp A, P)...206
16.3 Einschalten der Ventilatoren (Grundtyp A) ...207
16.4 Umschalten der Ventilatorstufen (Grundtyp A) ..207
16.5 Erhöhen der Ventilatordrehzahl (Grundtyp A, P).......................................208
16.6 Fehlerbehandlung...209

17 Frostschutz (Grundtyp A und P)...210
17.1 Aktivieren des Blocks..210
17.2 Wirkungsweise.. 212
17.3 Quittierung ..214
17.4 Anschlussschienen..215
17.5 Fehlerbehandlung...216

18 Vorwärmfunktion (Grundtyp A und P)..217
18.1 Aktivieren des Blocks..217
18.2 Wirkungsweise.. 217
18.3 Fehlerbehandlung...219

19 Stützbetrieb (Grundtyp A)..220
19.1 Aktivieren der Funktion..220
19.2 Wirkungsweise Stützbetrieb...221
19.3 Beispiele Stützbetrieb..225

20 Umluftbetrieb (Grundtyp A) ...227
20.1 Aktivieren der Funktion..227
20.2 Wirkungsweise Umluftbetrieb ..227

21 Nachtkühlung (Grundtyp A)...229
21.1 Aktivieren des Blocks..229
21.2 Wirkungsweise.. 229
21.3 Fehlerbehandlung...230

22 Einschaloptimierung (Grundtyp A)...231
22.1 Aktivieren der Funktion..231
22.2 Einschaloptimierung Kühlen und Heizen..231
23 Ventilatordrehzahlregler, bedarfsgeführt (Grundtyp P) .. 235
23.1 Allgemeines .. 235
23.2 Bedarfsgeführte Drehzahlregelung mit Drucksollwertoptimierung 235
23.3 Einstellen der Drucksollwertführung nach Klappenstellung 236
23.4 Anwendungsbeispiele ... 238
23.5 Diagnose Drucksollwertoptimierung ... 241
23.6 Luftvolumenstromungleich .. 242
23.7 Allgemeine Inbetriebnahmehinweise ... 242
24 Störungen .. 243
24.1 Aufgabe und Aktivierung .. 243
24.2 Kategorien von Störungen ... 243
24.3 Universelle Störungseingänge (1...10) .. 244
24.4 Vordefinierte Störungseingänge ... 245
24.5 Störungstaste extern ... 248
24.6 Störungsrelais .. 248
24.7 Ventilator-Freigabelrelais ... 249
24.8 Funktionskontrolle / Verdrahtungstest .. 249
25 Wärmebedarf ... 250
25.1 Aktivieren des Blocks (Grundtyp A, P, U) ... 250
25.2 Aktivieren des Blocks (Grundtyp C) ... 250
25.3 Überwachung (Grundtyp A, P, U) ... 251
25.4 Wärmebedarfsrelais (Q\textsubscript{w}) .. 252
25.5 Wärmebedarf stetig (\textsubscript{w}) ... 254
25.6 Anzeigewerte ... 255
25.7 Funktionskontrolle / Verdrahtungstest .. 255
25.8 Fehlerbehandlung ... 255
26 Kältebedarf ... 256
26.1 Aktivieren des Blocks (Grundtyp A, P, U) ... 256
26.2 Aktivieren des Blocks (Grundtyp C) ... 257
26.3 Überwachung .. 258
26.4 Kältebedarfsrelais (Q\textsubscript{w}) ... 259
26.5 Kältebedarf stetig (\textsubscript{w}) ... 260
26.6 Anzeigewerte ... 261
26.7 Funktionskontrolle / Verdrahtungstest .. 261
26.8 Fehlerbehandlung ... 261
27 Heizen/Kühlen Umschaltung ... 262
27.1 Aktivieren der Funktion ... 262
27.2 Betriebsartvorgabe Heizen/Kühlen ... 263
27.3 Wirkung der Funktion Heizen/Kühlen .. 265
27.4 Anzeige des aktuellen Zustands ... 265
27.5 Heizen/Kühlen Umschaltrelais ... 266
27.6 Fehlerbehandlung .. 266
27.7 Anwendungsbeispiele ... 267

28 Kommunikation .. 270
28.1 Aktivieren der Kommunikation .. 270
28.2 Menü "Kommunikation" .. 270

29 Hilfestellung bei Fehlern und Störungen .. 282
29.1 Umgang mit Störungen ... 282
29.2 Fehlercode-Liste .. 283
29.3 Behebung von Störungen .. 286
29.4 Behebung von Fehlern ... 287

30 Elektrische Anschlüsse .. 289
30.1 Anschlussregeln .. 289
30.2 Anschlusssellemmen ... 290

31 Anhang ... 291
31.1 Verwendete Abkürzungen ... 291
31.2 Konfigurationsschemen ... 293
31.3 Menübaum ... 320
31.4 Editierbare Texte .. 321
1 Übersicht

1.1 Gerätesortiment

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Name</th>
<th>Typ</th>
<th>Datenblatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regler</td>
<td>Universalregler</td>
<td>RMU710B, RMU720B, RMU730B</td>
<td>N3150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erweiterungsmodul</td>
<td>Universalmodul</td>
<td>RMZ785</td>
<td>N3146</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Universalmodul</td>
<td>RMZ787</td>
<td>N3146</td>
</tr>
<tr>
<td></td>
<td>Universalmodul</td>
<td>RMZ788</td>
<td>N3146</td>
</tr>
<tr>
<td></td>
<td>Modulverbinder</td>
<td>RMZ780</td>
<td>N3138</td>
</tr>
<tr>
<td>Bediengeräte</td>
<td>Bediengerät, aufsetzbar</td>
<td>RMZ790</td>
<td>N3111</td>
</tr>
<tr>
<td></td>
<td>Bediengerät, absetzbar</td>
<td>RMZ791</td>
<td>N3112</td>
</tr>
<tr>
<td></td>
<td>Bus-Bediengerät</td>
<td>RMZ792</td>
<td>N3113</td>
</tr>
<tr>
<td>Servicegerät</td>
<td>Servicetool</td>
<td>OCI700.1</td>
<td>N5655</td>
</tr>
<tr>
<td>Kommunikationszentrale</td>
<td>Kommunikationszentrale</td>
<td>OZW775</td>
<td>N5663</td>
</tr>
<tr>
<td>Web-Server</td>
<td>Web-Server</td>
<td>OZW772</td>
<td>N5701</td>
</tr>
</tbody>
</table>

RMU7..B

RMZ785

RMZ787

RMZ788

RMZ780

RMZ790

RMZ791

RMZ792

OCI700.1

OZW775

OZW772

Siemens
Universalregler RMU710B, RMU720B, RMU730B
Building Technologies
1 Übersicht

CE1P3150de
03.10.2011
1.2 Synco™ 700-Topologie

Legende

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMU7..B</td>
<td>Universalregler</td>
</tr>
<tr>
<td>RMZ90</td>
<td>Bediengerät, aufsetzbar</td>
</tr>
<tr>
<td>RMZ91</td>
<td>Bediengerät, abgesetzt</td>
</tr>
<tr>
<td>RMZ92</td>
<td>Bus-Bediengerät</td>
</tr>
<tr>
<td>RMZ8..</td>
<td>Erweiterungsmodule</td>
</tr>
<tr>
<td>OCI700.1</td>
<td>Servicetool</td>
</tr>
<tr>
<td>OZW772..</td>
<td>Web-Server</td>
</tr>
<tr>
<td>RMS..</td>
<td>Steuerungs- und Überwachungsgerät</td>
</tr>
</tbody>
</table>

RMH.. | Heizungsregler |
RMK.. | Kesselfolgeregler |
RMB.. | Steuerzentrale |
RXB.. | Raum-Controller |
RDG.. | Raumthermostat |
QAW740 | Raumgerät |
G..B181.1E/KN | VVS-Kompaktregler |
1.3 Gerätekombinationen

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Typ</th>
<th>Datenblatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive Fühler</td>
<td>Alle Fühler mit Messelement</td>
<td>N1721...N1846, N1713</td>
</tr>
<tr>
<td>LG-Ni 1000, Pt 1000, T1 (PTC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktive Fühler</td>
<td>Alle Fühler mit</td>
<td>N1821, N1850...N1932</td>
</tr>
<tr>
<td>Versorgungsspannung AC 24 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stetigem Ausgang DC 0...10 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wächter</td>
<td>QAF81..., QAF64...,</td>
<td>N1284, N1283, N1513, N1514, N1541, N1542, N1552</td>
</tr>
<tr>
<td>QFA81, QFM81, QFX21, QXA2000, QBM81...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raumgeräte</td>
<td>QAA25, QAA27, QAW740</td>
<td>N1721, N1633</td>
</tr>
<tr>
<td>QAA25, QAA27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktive Geber</td>
<td>BSG61</td>
<td>N1992</td>
</tr>
<tr>
<td>Stelleinrichtungen</td>
<td>Alle elektromotorischen und -</td>
<td></td>
</tr>
<tr>
<td>hydraulischen Stellantriebe</td>
<td>mit Betriebsspannung AC 24 V</td>
<td></td>
</tr>
<tr>
<td>für stetige Steuerung mit DC 0...10 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einzelheiten zu Stellantrieben und Armaturen siehe:</td>
<td></td>
<td>N4000...N4999</td>
</tr>
<tr>
<td>Volumenstromregler</td>
<td>G…B181.1E/3</td>
<td>N3544</td>
</tr>
<tr>
<td>VVS</td>
<td>G…B181.1E/KN networked versions</td>
<td>N3547</td>
</tr>
<tr>
<td>Transformator</td>
<td>SEM62.1, SEM62.2</td>
<td>N5536</td>
</tr>
</tbody>
</table>
1.4 Produktdokumentationen

Die nachfolgend aufgeführten Produktdokumentationen geben in Ergänzung zu dieser Basisdokumentation ausführliche Informationen zum sicheren und sachgerechten Einsatz und Betrieb von Synco™ 700-Produkten in gebäudetechnischen Anlagen.

<table>
<thead>
<tr>
<th>Dokumentenart</th>
<th>Dokument-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sortimentsbeschreibung: Synco™ 700</td>
<td>CE1S3110de</td>
</tr>
<tr>
<td>Basisdokumentation: Universalregler RMU710B, RMU720B, RMU730B</td>
<td>CE1P3150de</td>
</tr>
<tr>
<td>Datenblatt: Universalregler RMU7..B</td>
<td>CE1N3150de</td>
</tr>
<tr>
<td>Datenblatt: Universalmodule RMZ78…</td>
<td>CE1N3146de</td>
</tr>
<tr>
<td>Datenblatt: Modulverbinder RMZ780</td>
<td>CE1N3138de</td>
</tr>
<tr>
<td>Datenblatt: KNX-Bus</td>
<td>CE1N3127de</td>
</tr>
<tr>
<td>Basisdokumentation: Kommunikation über KNX-Bus</td>
<td>CE1P3127de</td>
</tr>
<tr>
<td>Installationsanleitung (G3151xx): RMB795, RMS705B, RMU7..B</td>
<td>74 319 0731 0</td>
</tr>
<tr>
<td>Montageanleitung (M3110xx): RMZ78…</td>
<td>74 319 0353 0</td>
</tr>
<tr>
<td>Montageanleitung (M3112xx): RMZ791</td>
<td>74 319 0339 0</td>
</tr>
<tr>
<td>Montageanleitung (M3138xx): RMZ780</td>
<td>74 319 0380 0</td>
</tr>
<tr>
<td>Bedienungsanleitung de, fr, it, es (B3144x1): Universalregler RMU7..B</td>
<td>74 319 0349 0</td>
</tr>
<tr>
<td>Bedienungsanleitung en, de, fr, nl (B3144x2): Universalregler RMU7..B</td>
<td>74 319 0350 0</td>
</tr>
<tr>
<td>Bedienungsanleitung sv, fi, no, da (B3144x3): Universalregler RMU7..B</td>
<td>74 319 0351 0</td>
</tr>
<tr>
<td>Bedienungsanleitung pl, cs, sk, hu, ru, bg (B3144x4): Universalregler RMU7..B</td>
<td>74 319 0352 0</td>
</tr>
<tr>
<td>Bedienungsanleitung sr, hr, sl, ro, el, tr (B3144x5): Universalregler RMU7..B</td>
<td>74 319 0438 0</td>
</tr>
<tr>
<td>CE Konformitätserklärung: HVAC Controls Synco 700 Range</td>
<td>CE1T3110xx</td>
</tr>
<tr>
<td>Umweltdeklaration (RMU7..B, RMS705, RMB795, RMH760, RMK770)</td>
<td>CE1E3110de01</td>
</tr>
<tr>
<td>Umweltdeklaration (RMZ78..)</td>
<td>CE1E3110de02</td>
</tr>
<tr>
<td>Umweltdeklaration (RMZ790)</td>
<td>CE1E3110de03</td>
</tr>
<tr>
<td>Umweltdeklaration (RMZ791)</td>
<td>CE1E3110de04</td>
</tr>
<tr>
<td>Umweltdeklaration (RMZ792)</td>
<td>CE1E3113de</td>
</tr>
</tbody>
</table>
1.5 Leistung

<table>
<thead>
<tr>
<th>Funktion</th>
<th>RMU710B</th>
<th>RMU720B</th>
<th>RMU730B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erweiterungsmodule: Max. 4 anschliessbar, Auswahl aus</td>
<td>max. 4</td>
<td>max. 4</td>
<td>max. 4</td>
</tr>
<tr>
<td>Erweiterung mit Universalmodul RMZ785</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Erweiterung mit Universalmodul RMZ787</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Erweiterung mit Universalmodul RMZ788</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Universelle Eingänge (Regler + Erweiterungsmodule)</td>
<td>6 + 20</td>
<td>8 + 20</td>
<td>8 + 20</td>
</tr>
<tr>
<td>als Analogeingang DC 0...10 V</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>als Analogeingang LG-Ni 1000</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>als Analogeingang T1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>als Digitaleingang</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>als Fernsollwert-Eingang (absolut und relativ)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Stetige Ausgänge (Regler + Erweiterungsmodule)</td>
<td>2 + 4</td>
<td>3 + 4</td>
<td>4 + 4</td>
</tr>
<tr>
<td>Relais Ausgänge (Regler + Erweiterungsmodule)</td>
<td>2 + 12</td>
<td>4 + 12</td>
<td>6 + 12</td>
</tr>
<tr>
<td>Anzahl fix geladener Anwendungen</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Anzahl geladener Sprachen, je nach Sprachgruppe</td>
<td>4 bis 6</td>
<td>4 bis 6</td>
<td>4 bis 6</td>
</tr>
<tr>
<td>Grundtypen</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Grundtyp A</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Grundtyp P</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Grundtyp C</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Grundtyp U</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Betriebswahl</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>über interne Schaltuhr (für Wochen- und Ferien / Sondertage)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>über Digitaleingänge (für Wochen- und Ferien / Sondertage)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Störungsmeldungen</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Anzahl freier Störungmeldeeingänge</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Störungsmeldereilais</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ventilatoren (Zuluft, Abluft)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1-stufiger Ventilator</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2-stufiger Ventilator</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>dreizahlige regulierter Ventilator</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pumpen</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Stetige Ausgänge</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Wärmerückgewinner</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mischluftklappe</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Linearen/Binären Stufenschalter (4 Relaisausgänge)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Variabler Stufenschalter (max. 6 Stufen)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Variabler Stufenschalter (max. 4 Stufen)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Wärmebedarf</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Kältebedarf</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Heizen/Kühlen Umschaltung</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Universalregler mit 3 Heiz- und 2 Kühlsequenzen _/</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Universalregler mit 2 Heiz- und 1 Kühlsequenz _/</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Raum-Zuluft oder Abluft-Zuluft-Kaskadenregler</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sommer- / Winterkompensation</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Universalschiebung</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Allgemeinbegrenzregler</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sequenzbegrenzregler</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sequenzsperrung nach TA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Luftqualitätsregler</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Öffnen der Aussenluftklappe</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Umschalten der Ventilatorstufen</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Erhöhen der Ventilatordrehzahl</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ventilatoren EIN</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Universeller Stützbetrieb in der Betriebsart Prekomfort und Economy für Heizen / Kühlen / Feuchte oder universell einsetzbar</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Funktion</td>
<td>RMU710B</td>
<td>RMU720B</td>
<td>RMU730B</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Nachtkühlung</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Frostschutz</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Frostschutzwächter</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2-stufiger Frostschutz, luftseitig</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>2-stufiger Frostschutz, wasserseitig</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Vorwärmfunktion</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Schaltuhr (Ein/Aus) für Nebenaggregate</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Logikblock für logisch verknüpfte Schaltungen</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Trendfunktion mit 4 Eingängen zur Aufzeichnung von Messgrössen</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Zählerfunktion zur Erfassung von Verbrauchswerten für 2 Zähler (ausschliesslich für Anzeigewercke)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
1.6 Applikationskonzept

1.6.1 Programmierte Anwendung

In jedem Universalregler sind 5 getestete, programmierte Anwendungen geladen. Der einfachste Weg bei der Inbetriebnahme ist es, eine programmierte Anwendung zu aktivieren.

Die 5 pro Regler intern geladenen Anwendungen sind beschrieben:
- In dieser Basisdokumentation im Kapitel 31.2 "Konfigurationsschemen"
- im Datenblatt N3150
- in der Installationsanleitung G3151

Beispiel

Auf dem Display des Bediengerätes wird in der Bedienzeile "Anlagentyp": A01 (AEFB01 U3B HQ) angezeigt

Es bedeuten:

A Die Standardanwendung entspricht dem Grundtyp A

01 Erste intern geladene Standardanwendung

AEFB01 U3B HQ Der in Klammern stehende Name ist der Code der Anwendung; er entspricht der Bezeichnung des Anwendungsblatts

Hinweis

Je nach verwendetem Reglertyp sind zusätzliche länderspezifische Anwendungen auf dem Universalregler geladen.

1.6.2 Angepasste Anwendung

1.6.3 Freie Konfiguration

Die gewünschte Anwendung ist nicht beschrieben, die Konfiguration muss neu aufgesetzt werden. Mit Hilfe der Konfigurationsschemen kann der Regler der Anlage angepasst werden (siehe hierzu Kapitel 31.2 "Konfigurationsschemen").

Empfehlung

Eventuell können Sie Zeit sparen, wenn Sie mit der ähnlichsten intern geladenen oder mit dem ähnlichsten Anwendungsblatt starten und nur die Differenzen bearbeiten.
1.7 Wichtige Hinweise

⚠️ Mit nebenstehendem Symbol werden besonders zu beachtende Sicherheitshinweise und Warnungen hervorgehoben. Werden solche Hinweise nicht beachtet, kann es zu Personen- und/oder erheblichen Sachschäden kommen.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sachgerechte Anwendung</td>
<td>Der einwandfreie und sichere Betrieb von Synco™ 700-Produkten setzt sachgemäßen Transport, sachgerechte Lagerung, sachgerechte Montage, Installation und Inbetriebnahme, sowie sorgfältige Bedienung voraus.</td>
</tr>
<tr>
<td>Elektrische Installation</td>
<td>Sicherungen, Schalter, Verdrahtungen und Erdungen sind nach den örtlichen Vorschriften für Elektroinstallationen auszuführen.</td>
</tr>
<tr>
<td>Inbetriebnahme</td>
<td>Die Einsatzvorbereitung und Inbetriebnahme der Synco™ 700-Produkte dürfen nur von qualifiziertem Personal vorgenommen werden, das von Siemens Building Technologies entsprechend geschult worden ist.</td>
</tr>
<tr>
<td>Bedienung</td>
<td>Die Synco™ 700-Produkte dürfen nur von Personen bedient werden, die von Siemens Building Technologies oder deren Beauftragten unterwiesen und auf mögliche Gefahren hingewiesen worden sind.</td>
</tr>
<tr>
<td>Verdrahtung</td>
<td>Bei der Verdrahtung ist eine strenge Trennung zwischen dem AC-230-V-Bereich und dem AC-24-V-Kleinspannungsbereich (SELV) einzuhalten, um den Schutz vor elektrischem Schlag zu gewährleisten!</td>
</tr>
<tr>
<td>Störungen</td>
<td>Für den Fall, dass am System Störungen auftreten und Sie nicht berechtigt sind, Diagnose und Störungsbeseitigung durchzuführen, rufen Sie den Service an.</td>
</tr>
<tr>
<td>Entsorgung</td>
<td>Die Geräte enthalten elektrische und elektronische Komponenten und dürfen nicht als Haushaltsmüll entsorgt werden.</td>
</tr>
</tbody>
</table>

Die örtliche und aktuell gültige Gesetzgebung ist unbedingt zu beachten.
2 Bedienung

Die Synco™ 700-Geräte dürfen nur von Personen bedient werden, die von Siemens Building Technologies oder deren Beauftragten unterwiesen und auf mögliche Gefahren hingewiesen worden sind.

2.1 Bedienung ohne Bediengerät

Ohne Bediengerät sind folgende Bedienelemente am Regler und am Erweiterungsmodul nutzbar:

- **1 LED "Run"** zur Anzeige des Geräte-Betriebszustandes; dabei bedeuten:
 - LED leuchtet: Speisespannung vorhanden, keine Fehler in Anwendung und Peripherie
 - LED aus: Keine Speisespannung vorhanden oder Fehler in Anwendung / Peripherie

- **2 Taster "\[\]"** mit LED (rot) zur Anzeige einer Störungsmeldung und ihrer Quittierung; dabei bedeuten:
 - LED blinkt: Störungsmeldung bereit zum Quittieren
 - LED leuchtet: Störungsmeldung noch anstehend aber noch nicht entriegelt
 - LED aus: Keine Störungsmeldung vorhanden
 - Taster drücken: Störung quittieren bzw. entriegeln

- **3 Programmiertaster (Prog)** zur Vergabe der Geräte-Adresse im KNX-Systemmode (nur mit Werkzeug bedienbar)

- **4 Programmier-LED (Prog)** zur Anzeige des Programmiervorganges; dabei bedeutet:
 - LED leuchtet: LED leuchtet solange, bis die Adressierung abgeschlossen ist

- **5 LED (Run)** für die Überwachung von Speisung und Adressierung; dabei bedeuten:
 - LED leuchtet: Speisespannung vorhanden, Adressierung erfolgreich
 - LED blinkt: Speisespannung vorhanden, Regler hat noch keine gültige KNX-Adresse
 - LED aus: Keine Speisespannung vorhanden
2.2 Bedienung mit Bediengerät

2.2.1 Funktionen des Bediengeräts

2.2.2 Bedienkonzept

Grundlagen

Alle Einstell- und Ablesewerte sind softwaremäßig als Datenpunkte (Bedienzeilen) des Menübaums angeordnet. Mit den Bedienelementen kann jede Bedienzeile angewählt und abgelesen bzw. eingestellt werden. Alle Menüs werden auf der Anzeige (LCD) im Klartext dargestellt.

Im Regler sind mehrere Sprachen programmiert; bei der Inbetriebnahme ist die zutreffende Sprache zu aktivieren. Die Bedienungsanleitung für den Endbenutzer liegt dem Regler bei; sie enthält jeweils die im Regler geladenen Sprachen.

Bedienelemente

![Diagramm der Bedienelemente](image.png)

Legende

1. Anzeigefeld
2. Infotaste "INFO"
 - Funktion 1: Wichtige Anlagendaten abrufen
 - Funktion 2: Erläuterungen zu den einzelnen Bedienzeilen im aktuellen Menü abrufen
3. Drehdruckknopf "OK"
 - Drehen: Bedienzeile anwählen bzw. Wert verstellen
 - Drücken: Bedienzeile bzw. Einstellung bestätigen
4. Rücktaste "ESC"
 - Ins vorherige Menü zurück springen
5. Störungstaste "□" mit Leuchtdiode (LED)
 - LED: Störung anzeigen
 - Drücken: Störung quittieren bzw. entriegeln

Wird ein Bedienelement betätigt, schaltet die Hintergrundbeleuchtung der Anzeige automatisch ein. Nach einer Ruhezeit von 30 Minuten schaltet sie aus und die Startseite erscheint.
2.2.3 Bedienebenen

Es gibt zwei Bedienebenen:
- Infoebene
- Einstellebene

Diese beiden Ebenen sind immer aktiv, unabhängig davon, welche Zugriffsebene aktiv ist.

Infoebene

In dieser Ebene können wichtige Anlagedaten abgerufen werden.

Einstellebene

Die Einstellebene ist als Menü aufgebaut. Hier können Bedienzeilen gelesen und / oder deren Werte geändert werden.

Mit der Taste "INFO" können Menü-Erläuterungen zu den einzelnen Bedienzeilen abgerufen werden. Die Informationen bleiben solange sichtbar wie die Taste gedrückt bleibt.

Schalten zwischen den Bedienebenen

- Von der Infoebene in die Einstellebene schalten:
 1. Auswahl der Startseite durch Drücken der Taste "ESC"
 2. Drehdruckknopf "OK" drücken, um in die Einstellebene zu wechseln

- Von der Einstellebene in die Infoebene schalten:
 1. Auswahl der Startseite mit Hilfe der Taste "ESC". Taste sooft drücken bis die Startseite wieder erscheint
 2. Taste "INFO" drücken, um in die Infoebene zu wechseln
2.2.4 Zugriffsrechte

Für jeden Parameter (Bedienzeile) ist ein Zugriffsrecht definiert. Es gibt drei Zugriffsebenen:

<table>
<thead>
<tr>
<th>Ebene</th>
<th>Zugang</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benutzerebene (für den Anlagenbe-</td>
<td>Die Benutzerebene ist immer zugänglich. Alle hier sichtbaren veränderbaren Bedienzeilen können durch den Benutzer verstellen</td>
<td></td>
</tr>
<tr>
<td>treiber)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serviceebene (für Wartungsauf-</td>
<td>Drehdruckknopf "OK" und Rücktaste "ESC" gleichzeitig drücken, dann Bedienzeile "Serviceebene" wählen und durch Drücken des Drehdruckknopfes die Wahl bestätigen</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>gaben)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passwortebene (für die Inbetrieb-</td>
<td>Drehdruckknopf "OK" und Rücktaste "ESC" gleichzeitig drücken, dann Bedienzeile "Passwortebene" wählen und durch Drücken des Drehdruckknopfes die Wahl bestätigen; anschliessend für das Passwort die Zahl "7" eingeben und durch Drücken des Drehdruckknopfes bestätigen</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>nahme)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Der Regler geht nach Time-out (30 Minuten, während der keine Bedienung am Regler erfolgt) in die Benutzerebene.
- Von der aktuellen Zugriffsebene in eine andere Zugriffsebene schalten:
 1. Drehdruckknopf "OK" und Rücktaste "ESC" gemeinsam drücken. Es erscheint das Menü "Zugriffsebenen".
 2. Die gewünschte Zugriffsebene durch Drehen des Drehdruckknopfes wählen und durch Drücken desselben bestätigen.
 3. Um in die Passwortebene zu gelangen, ist als Passwort die Zahl 7 einzugeben.
3 Philosophie der Grundtypen

Beim RMU7..B stehen 4 Grundtypen zur Verfügung. Sie unterscheiden sich nach:

- **Einsatzgebiet**
 - Lüftung
 - Primärluftaufbereitung
 - Kaltwasseraufbereitung
 - Universal

- **Betriebsart**
 - Ein-/Ausschalten nach Raumbetriebsart
 - Bedarfsgeführt nach KNX Signal

- **Regelung**
 - Auf Raumtemperatur
 - Auf bedarfsgeführte Sollwerte nach KNX Signal
 - Auf eine frei wählbare, universelle Messgröße

Für eine Anwendung muss der passende Grundtyp ausgewählt werden.

Kurzcharakteristik:

- **Grundtyp A, Lüftungsregler**
 - Typisches Einsatzgebiet: Regelung einer Luftaufbereitungsanlage

- **Grundtyp P, Primärluftaufbereitung**
 - Typisches Einsatzgebiet: Bedarfsgeführte Regelung einer Luftaufbereitungsanlage mit VVS-Einzelraumregelung

- **Grundtyp C, Kaltwasservorregelung**
 - Typisches Einsatzgebiet: Bedarfsgeführte Regelung einer Kaltwasseraufbereitung

- **Grundtyp U, Universalregler**
 - Typisches Einsatzgebiet: Regelung auf einen Vorlaufsollwert (universelle Messgröße).

3.1 Grundtyp A, Lüftungsregler

 Typisches Einsatzgebiet: Regelung einer Luftaufbereitungsanlage

Beispiel: Raum-Zuluft-Kaskadenregelung

Merkmale Grundtyp A

Betriebsart: *Ein-/Ausschalten nach Raumbetriebsart*

Die Anlage wird über eine eigene, interne Schaltuhr ein- und ausgeschalten.

Der Regler arbeitet mit den Raumbetriebsarten Komfort, Prekomfort, Economy und Schutzbetrieb.

Einsatz Regler 1: *Auf Raumtemperatur*

Der Regler 1 kann als Kaskaden- oder Konstanttemperaturregler eingesetzt werden

Ventilatoren:

Wahlweise 1-stufige, 2-stufige oder drehzahlgeregelte Ventilatoren
Zusatzfunktionen:
- Luftqualitätsregelung wirkend auf Mischluftklappe oder Ventilatordrehzahl
- Frostschutz
- Vorwärmeinrichtung
- Stützbetrieb
- Nachkühlung
- Entrauchen / Brandabschaltung

Hinweis
Das Raumgerät QAW740 kann verwendet werden.

3.2 Grundtyp P, Primärlluftaufbereitung

Typisches Einsatzgebiet: Bedarfsgeführte Regelung einer Luftaufbereitungsanlage mit VVS-Einzelraumregelung

Beispiel: Zulufttemperatur bedarfsgeführt

Die Luftaufbereitung wird mit einem RMU7..B, Grundtyp P realisiert; die Räume haben Einzelraumregler. Alle Regler sind über KNX verbunden und tauschen die relevanten Betriebsdaten untereinander aus.

Merkmale Grundtyp P

Betriebsart: Bedarfsgeführt nach KNX Signal

Einsatz Regler 1: Auf bedarfsgeführten Sollwert nach KNX Signal

Die Zulufttemperaturregelung arbeitet mit einem bedarfsgeführten Zuluftsollwert; die Sollwerte werden von den angeschlossenen Einzelraumreglern vorgegeben bzw. koordiniert.

Ventilatoren: Wahlweise drehzahlgeregelte Ventilatoren. Einzelraumregler regeln auf variablen Volumenstrom. Folgende Varianten sind möglich:
- Konstanter Vordruck ohne Rückmeldung der Klappenstellung

Zusatzfunktionen der Regelung einer Luftaufbereitungsanlage:
- Luftqualitätsregelung wirkend auf Mischluftklappe
- Frostschutz
- Die Schaltuhr des RMU7..B kann an die Einzelraumregler über KNX vorgegeben werden.

Hinweis
Das QAW740 kann nicht verwendet werden.
Die Funktionen der Einzelraumregelung sind in der Dokumentation P3127 beschrieben.
Alternativ können bei der Konfiguration einer Raumgruppe folgende Informationen für die Einzelraumregelung vorgegeben werden:
- Raumbetriebsart mit Zeitschaltprogramm
- Timer-Funktion
- Betriebswahlschalter
- Ferien- und Sondertage
- Brandabschaltung und Entrauchen

Siehe dazu die Basisdokumentation P3121 des RMB795.

3.3 Grundtyp C, Kaltwasservorregelung

Typisches Einsatzgebiet: Bedarfsgeführte Regelung einer Kaltwasseraufbereitung.

Regelung der Kaltwasseraufbereitung mit einem RMU7..B als Vorregler; Kaltwasserverbraucher sind die Luftkühler der Lüftungsanlagen oder Kühlecken mit Einzelraumregelung. Die Regler sind über KNX miteinander verbunden und tauschen alle relevanten Betriebsdaten aus.

Betriebsart: Bedarfsgeführt nach KNX Signal
Die Kaltwasseraufbereitung wird über die Bedarfssignale (Kälteverteilzone) der Einzelraumregler ein- und ausgeschaltet.

Einsatz Regler 1: Auf bedarfsgeführte Sollwerte nach KNX Signal
Der Vorlauftemperaturregler arbeitet mit einem bedarfsgeführten Vorlaufsollwert; die Vorlaufsollwerte werden von den angeschlossenen Kaltwasserverbrauchern vorgegeben bzw. koordiniert.

Hinweise
- Bei diesem Grundtyp können folgende Aggregate/Funktionen nicht konfiguriert werden: Ventilatoren, Wärmerückgewinner, Mischluftklappe, Frostschutz, Vorwärmfunktion, Stützbetrieb und Nachtkühlung
- Raumgerät QAW740 kann mit Grundtyp C nicht verwendet werden.
3.4 Grundtyp U, Universalregler

Typisches Einsatzgebiet: Regelung auf einen Vorlaufsollwert (universelle Messgröße).

Beispiel:
Vorlauf temperaturregelung

Merkmale Grundtyp U
Betriebsart: *Ein-/Ausschalten nach Raumbetriebsart*
Die Anlage wird über eine eigene, interne Schaltuhr ein- und ausgeschaltet. Der Regler arbeitet mit den Raumbetriebsarten Komfort, Prekomfort, Economy und Schutzbetrieb.

Einsatz Regler 1: *Auf eine frei wählbare, universelle Messgröße*
Der Universalregler arbeitet mit einer frei wählbaren, universellen Messgröße.

Hinweise
- Bei diesem Grundtyp können folgende Aggregate/Funktionen nicht konfiguriert werden: Ventilatoren, Wärmerückgewinner, Mischluftklappe, Frostschutz, Vorwärmetaugheit, Stützbetrieb und Nachtkühlung
- Das Raumgerät QAW740 kann mit Grundtyp U nicht verwendet werden
4 Inbetriebnahme

4.1 Einstieg in die Inbetriebnahme

Während der Inbetriebnahme bleiben die Regelung und die Sicherheitsfunktionen der Anlage ausgeschaltet!

4.1.1 Einstieg beim ersten Power-up

Beim erstmaligen Anlegen der Betriebsspannung startet der Regler mit dem Menü "Sprache". Hier kann die Sprache für die Inbetriebnahme resp. das Bedienen der Anlage gewählt werden.

Nachdem die Sprache mit Hilfe des Drehdruckknopfes "OK" am Bediengerät gewählt und bestätigt worden ist, kann auf dieselbe Weise die Zeit, das Datum und das Jahr eingestellt werden.

Anschliessend erscheint das Menü "Inbetriebnahme". Die Zugriffsebene ist auf "Passwortebene" eingestellt. Im Menü "Anlagentyp" (Pfad: Hauptmenü > Inbetriebnahme > Grundkonfiguration > Anlagentyp) stehen dem Inbetriebnehmer eine Auswahl an Anlagentypen zur Verfügung. Die erste Inbetriebnahme des Reglers erfolgt gemäss der Installationsanleitung 74 319 0731 0 (G3151xx); sie ist der Verpackung des Reglers beigelegt.

4.1.2 Einstieg aus dem Hauptmenü

Nach Auswahl der Bedienzeile "Inbetriebnahme" (nur sichtbar in der Zugriffsebene "Passwortebene") und der Bestätigung durch das Drücken des Drehdruckknopfes "OK", erscheint am Display der Hinweis auf den Anlagenstopp.

Achtung!
Anlage stoppt

Nach erneutem Drücken des Drehdruckknopf "OK" wird die Anlage (Anwendung) gestoppt. Alle Ausgänge werden in einen definierten "AUS"-Zustand gesetzt und am Display erscheint das Menü "Inbetriebnahme".

Einstellebene:
Inbetriebnahme-Menü
4.2 Grundkonfiguration

Im Menü "Grundkonfiguration" sind folgende Einstellungen vorzunehmen:
- Wahl des Grundtyps resp. einer programmierten Anwendung
- Zuordnen der Erweiterungsmodulen an die Reglerposition

Jedem Gerät muss zuerst der Grundtyp resp. eine programmierte Anwendung zugeordnet werden. Mit der Wahl des Anlagentyps werden Funktionen freigegeben oder gesperrt.

4.2.1 Grundtypen

Folgende Grundtypen werden unterschieden:
- **Grundtyp A** (Einsatz als Lüftungsregler)
 Hauptmerkmal: Regler 1 ist Raumtemperaturregler, Zulufttemperaturregler oder Raum-Zulufttemperatur-Kaskadenregler
- **Grundtyp P** (Einsatz als bedarfsgeführter Zulufttemperaturregler)
 Hauptmerkmal: Regler 1 ist bedarfsgeführter Zulufttemperaturregler
- **Grundtyp C** (Einsatz als bedarfsgeführter Kaltwasserregler)
 Hauptmerkmal: Regler 1 ist bedarfsgeführter Kaltwasser-Vorlauftemperaturregler
- **Grundtyp U** (Einsatz als Universalregler)
 Hauptmerkmal: Regler 1 ist Universalregler

4.2.2 Zuordnung von Erweiterungsmodulen

Die Funktion des RMU7..B-Reglers kann erweitert werden, indem ihm maximal 4 Erweiterungsmodule angehängt werden.

An jeden RMU7..B können angeschlossen werden:
- 1x RMZ785: Erweiterung der Eingänge
 → 8 Universaleingänge
- 2x RMZ787: Erweiterung der Ein- und Ausgänge
 → 4 Universaleingänge, 4 Relaisausgänge
- 2x RMZ788: Erweiterung der Ein- und Ausgänge
 → 4 Universaleingänge, 2 stetige Ausgänge, 2 Relaisausgänge

Die Erweiterungen können aktiviert werden, indem diese einfach dem Regler angehängt werden. Zusätzlich muss die Position des Erweiterungsmoduls dem Regler eingerichtet werden.

Beispiel

<table>
<thead>
<tr>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
<th>Position 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMU7xxB</td>
<td>RMZ787(1)</td>
<td>RMZ787(2)</td>
<td>RMZ788(1)</td>
</tr>
<tr>
<td>RMZ785</td>
<td>RMZ787(1)</td>
<td>RMZ787(2)</td>
<td>RMZ788(2)</td>
</tr>
</tbody>
</table>

- Zum Hinzufügen eines Erweiterungsmoduls ist das System grundsätzlich spannungslos zu schalten
- Eine geladene Standardanwendung kann auch Verbindungen auf die Erweiterungsmodul enthalten. Die entsprechenden Funktionen sind nur aktiv, wenn auch das Erweiterungsmodul angeschlossen und aktiviert wurde
4.2.3 Fehlerbehandlung

Stimmen die tatsächlichen Erweiterungsmodule und deren Positionen nicht mit den in der Reglerliste eingetragenen Werten überein oder fällt ein Erweiterungsmodul während des Betriebs aus, so wird eine Störung generiert und die Abarbeitung wird angehalten. Die Ausgänge behalten ihren Zustand bei, den sie vor der Störung hatten.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Name</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>7101</td>
<td>Störung</td>
<td>Dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>7102</td>
<td>Erweiterungsmodul</td>
<td></td>
</tr>
<tr>
<td>7103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7104</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 Nutzung dieser Basisdokumentation bei der Inbetriebnahme

Gemäss dem Applikationskonzept (Kapitel 1.6)...

...entspricht Ihre Anlage einer der intern geladenen Standardanwendungen A01 bis A05, oder...

Hier helfen Ihnen die Kapitel 5 bis 28, um die sinnvoll voreingestellten Werte, falls notwendig, anzupassen. Achten Sie auf die Menüpfade ... > Einstellungen > ...

...entspricht Ihre Anlage einem Applikationsblatt, oder...

Hier helfen Ihnen die Kapitel 5 bis 28, um die sinnvoll voreingestellten Werte, falls notwendig, anzupassen. Achten Sie auf die Menüpfade ... > Einstellungen > ...

...entspricht Ihre Anlage weder einer intern geladenen Standardanwendung A01 bis A05 noch einer in einem Anwendungsblatt beschriebenen Anlage

- Bei der Auswahl der passenden Funktionsblöcke helfen Ihnen die Konfigurationsschemen in Kapitel 31.2.
- Bei der Aktivierung der Funktionsblöcke helfen Ihnen die Kapitel 5 bis 28. Achten Sie auf die Menüpfade ... > Zusatzkonfiguration > ...
- die Kapitel 5 bis 28 helfen Ihnen, um die sinnvoll voreingestellten Werte der aktivierten Funktionsblöcke, falls notwendig, anzupassen. Achten Sie auf die Menüpfade ... > Einstellungen > ...
4.4 Verdrahtungstest

Während des Verdrahtungstests ist die Anwendung nicht aktiv, die Ausgänge befinden sich in einem definierten "AUS"-Zustand; sicherheitsrelevante Funktionen sind ausgeschaltet!

Beim Verdrahtungstest werden die Ein- und Ausgänge auf folgende Fehler kontrolliert:
- Anschlussfehler, d. h. Vertauschung von Leitungen
- Positionsfehler, d. h. Fühler oder Stellgeräte vertauscht
- Diskrepanz zwischen Anschlusstechnik und Reglerkonfiguration, z. B. LG-Ni1000 anstelle aktiv DC 0...10 V

Verdrahtungstest

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>z. B. N.X1</td>
<td>Anzeige des aktuellen Messwerts</td>
</tr>
</tbody>
</table>

Hauptschn > Inbetriebnahme > Verdrahtungstest > Eingänge >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Stellungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>z. B. Störungsrelais 1</td>
<td>Aus, Ein</td>
</tr>
</tbody>
</table>

4.5 Ausstieg aus der Inbetriebnahme

Liegt eine gültige Anwendung vor, so kann das Inbetriebnahme-Menü wie folgt verlassen werden:
- Drücken Sie die Taste "ESC". Auf dem Display erscheint eine Dialogbox mit folgender Information

 ![Achtung!, Anlage startet](image)

- Bestätigen Sie dies durch das Drücken des Drehdruckknopfs "OK". Daraufhin fährt der Regler mit den vorgenommenen Einstellungen hoch, die Anlage läuft an und es erscheint das Hauptmenü auf dem Display
4.6 Datensicherung

Nach abgeschlossener Inbetriebnahme kann der gesamte Inbetriebnahme-Datensatz (Konfiguration und alle Einstellungen) im Regler gespeichert werden. Werden später von einem unbefugten Bediener wichtige Werte verändert, ist es mit dieser Funktion einfach möglich, das Gerät wieder in seinen eingeregelten Zustand nach erfolgter Inbetriebnahme zu bringen.

Die folgenden Werte werden bei einer Datensicherung nicht gespeichert, respektive nicht wieder hergestellt:
- Alle benutzerdefinierten Texte, Visitenkarten
- Kalender- und Schaltuhr-Einstellungen
- Grundeinstellungen im Menü "Kommunikation"
- Aktuelle Uhrzeit
- Trend-Einstellungen
- Werte im Menü "Einstellungen > Gerät"

<table>
<thead>
<tr>
<th>Einstellwerte</th>
<th>Hauptmenü > Datensicherung ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
<td>Bereich</td>
</tr>
<tr>
<td>Wiederherstellen</td>
<td></td>
</tr>
<tr>
<td>Speichern</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anzeigewerte</th>
<th>Hauptmenü > Datensicherung ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
<td>Bemerkung</td>
</tr>
<tr>
<td>Speicherungsdatum</td>
<td>Anzeige des Datums, an dem der Inbetriebnahme-Datensatz in den Reglerspeicher geschrieben wurde</td>
</tr>
<tr>
<td>Speicherungsjahr</td>
<td>Anzeige des Jahres, in dem der Inbetriebnahme-Datensatz in den Reglerspeicher geschrieben wurde</td>
</tr>
</tbody>
</table>

4.7 Ausstieg aus der Passwortebene

Stellen Sie nach Abschluss der Inbetriebnahme auf dem Regler die Zugriffsebene "Benutzerbene" ein. Vorgehensweise:
1. ins Hauptmenü gehen
2. den Drehdruckknopf "OK" und die Taste "ESC" gemeinsam drücken. Darauffin erscheint das Menü "Zugriffsebenen"
4.8 Geräte-Informationen

Im Menü "Geräte-Informationen" können Regler-Informationen angesehen werden.

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anlagentyp</td>
<td>z. B. A01</td>
</tr>
<tr>
<td>Anlagentyp angepasst</td>
<td>Standardapplikation oder veränderte Standardapplikation</td>
</tr>
<tr>
<td>Dateiname</td>
<td>z. B. AEFB01 U3B HQ</td>
</tr>
<tr>
<td>Gerätetyp</td>
<td>z. B. RMU730B-1</td>
</tr>
<tr>
<td>Software-Version</td>
<td>des Reglers</td>
</tr>
<tr>
<td>Hardware-Version</td>
<td>des Reglers</td>
</tr>
</tbody>
</table>

Beispiel

Es bedeuten:

Anlagentyp Anzeige des geladenen Anlagentyps, z. B. A01
Datei Hier wird der Dateiname der Anwendung angezeigt, z. B. AEFB01 U3B HQ

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erweiterungsmodul</td>
<td>Anzeige der Modul-Typenbezeichnung</td>
</tr>
<tr>
<td>Software-Version</td>
<td>des Erweiterungsmoduls</td>
</tr>
<tr>
<td>Hardware-Version</td>
<td>des Erweiterungsmoduls</td>
</tr>
</tbody>
</table>

4.9 Kennzeichnung eines Eingriffs

Kennzeichnung

Wurde die interne Standardanwendung angepasst oder erfolgte nachträglich ein Zugriff auf das Menü "Zusatzkonfiguration" erhält der "Anlagentyp" vor seiner Typenbezeichnung einen Stern.

Der Stern wird beim Ausstieg aus dem Menü "Zusatzkonfiguration" automatisch gesetzt; auch wenn nichts geändert wurde. Zusätzlich wird im Menü "Geräte-Informationen" in der Bedienzeile "Anlagentyp angepasst" der Wert "Ja" gesetzt.

Rücksetzung der Kennzeichnung

Der Stern wird gelöscht und in der Zeile "Anlagentyp angepasst" erscheint der Wert "Nein", wenn im Menü "Grundkonfiguration" als Anlagentyp die alte oder eine neue Standardanwendung geladen wird. Es folgt eine Neukonfiguration auf der Basis der gewählten Anwendung.
5 Allgemeine Einstellungen

5.1 Zeit und Datum

5.1.1 Wirkungsweise

Der Regler hat eine Jahresuhr, welche die Uhrzeit, den Wochentag und das Datum beinhaltet.

Zeitformat

Folgende Zeitformate können gewählt werden:

<table>
<thead>
<tr>
<th>Zeitformat</th>
<th>Darstellung</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 Stunden</td>
<td>Datum dd.mm.yyyy (Tag.Monat.Jahr)</td>
<td>31.05.2006</td>
</tr>
<tr>
<td></td>
<td>Uhrzeit hh:mm (Stunden : Minuten)</td>
<td>15:56</td>
</tr>
<tr>
<td>12 Stunden (am/pm)</td>
<td>Datum mm/dd/yy (Monat/Tag/Jahr)</td>
<td>05/31/2006</td>
</tr>
<tr>
<td></td>
<td>Uhrzeit hh:mm am oder pm (Stunden : Minuten am oder pm)</td>
<td>03:56 pm</td>
</tr>
</tbody>
</table>

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > oder
Hauptmenü > Einstellungen > Gerät >

Bedienzeile | Bereich | Werkeinstellung
Zeitformat | 24 Stunden, 12 Stunden (am/pm) | 24 Stunden |

Hauptmenü > Zeit / Datum

Bedienzeile | Bereich | Werkeinstellung
Zeit | 00:00...23:59 | 00:00 |
Datum | 01.01...31.12 | 01.01 |
Jahr | 2000...2080 | Aktuell |

Sommer-/Winterzeitumstellung

Der Regler stellt automatisch von Sommer- auf Winterzeit und umgekehrt um. Da sich die entsprechenden Normen ändern können, sind die Daten der frühesten Zeitumstellung änderbar.

Die eingestellten Daten für die Umstellung auf Sommerzeit resp. auf Winterzeit wirken, dass am ersten Sonntag ab diesem Datum die Zeit von 02:00 (Winterzeit) auf 03:00 (Sommerzeit) resp. von 03:00 (Sommerzeit) auf 02:00 (Winterzeit) gestellt wird.

Hinweis

Zur Abschaltung der Sommer-/Winterzeitumstellung werden beide Daten auf den gleichen Tag gestellt.

Einstellwerte

Hauptmenü > Zeit / Datum

Bedienzeile | Bereich | Werkeinstellung
Sommerzeitbeginn | 01.01. ... 31.12 | 25.03 |
Winterzeitbeginn | 01.01. ... 31.12 | 25.10 |

Uhrzeitüberwachung

Einstellwerte

Hauptmenü > Zeit / Datum >

Bedienzeile | Bereich | Werkeinstellung
Ungültige Uhrzeit | Inaktiv, Aktiv | Aktiv |
5.1.2 Kommunikation

Zeit und Datum sind über den Bus austauschbar. Der Regler kann Autonom, Slave oder Master sein. Folgende Einstellungen für den Uhrzeitbetrieb sind möglich:
- Autonom (sendet nicht und empfängt nicht)
- Slave: Uhrzeit ab Bus (empfängt das Synchronisationssignal vom Bus)
- Master: Uhrzeit an Bus (sendet das Synchronisationssignal auf Bus)

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uhrzeitbetrieb</td>
<td>Autonom, Slave, Master</td>
<td>Master</td>
</tr>
</tbody>
</table>

Ist der Regler als Uhrzeit-Slave eingestellt, kann zusätzlich gewählt werden, ob von diesem Regler aus die Uhrzeit der Master-Uhr manuell verstell werden kann.

Folgende Einstellungen für die Uhrslave-Fernverstellung sind möglich:
- Nein (Uhrzeit-Slave ohne Verstellmöglichkeit der Systemzeit)
- Ja (Uhrzeit-Slave mit Verstellmöglichkeit der Systemzeit)

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uhrslave-Fernverstellung</td>
<td>Ja, Nein</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Die Wirkung der einzelnen Eingaben ist wie folgt:

<table>
<thead>
<tr>
<th>Uhrzeit-Betrieb</th>
<th>Uhrslave-Fernverstell.</th>
<th>Wirkung</th>
<th>Grafik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonom</td>
<td>keine Auswirkung</td>
<td>• Die Uhrzeit am Regler kann verstell werden</td>
<td>Verstellung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Die Uhrzeit des Reglers wird nicht an die Systemzeit angepasst</td>
<td>Reglerzeit Systemzeit</td>
</tr>
<tr>
<td>Slave</td>
<td>Nein</td>
<td>• Die Uhrzeit am Regler kann nicht verstell werden</td>
<td>Verstellung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Die Uhrzeit des Reglers wird laufend automatisch an die Systemzeit angepasst</td>
<td>Reglerzeit Systemzeit</td>
</tr>
<tr>
<td>Slave</td>
<td>Ja</td>
<td>• Die Uhrzeit am Regler kann verstell und passt gleichzeitig die Systemzeit an</td>
<td>Verstellung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Die Uhrzeit des Reglers wird laufend automatisch an die Systemzeit angepasst</td>
<td>Reglerzeit Systemzeit</td>
</tr>
<tr>
<td>Master</td>
<td>keine Auswirkung</td>
<td>• Die Uhrzeit am Regler kann verstell und passt gleichzeitig die Systemzeit an</td>
<td>Verstellung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Die Reglerzeit ist Vorgabe für das System</td>
<td>Reglerzeit Systemzeit</td>
</tr>
</tbody>
</table>

Pro System darf nur ein Uhrzeit-Master eingesetzt werden. Werden mehrere Regler als Master parametriert, erfolgt eine Fehlermeldung.

Empfehlung

Wenn die Möglichkeit besteht wird empfohlen, den Regler über Bus mit synchronisierter Uhrzeit zu betreiben, wie dies in diesem Kapitel beschrieben ist.
5.1.3 Fehlerbehandlung

Fehlt die Uhr am Bus und ist die lokale Uhr als Uhrzeit-Slave parametriert, so wird mit der internen Uhr weitergearbeitet und eine Störungsmeldung "Systemzeitausfall" generiert.

Bei einem Stromausfall hat die Uhr eine Gangreserve von typisch 48 h und mindestens 12 h. Dauert der Stromausfall länger, muss die Uhrzeit neu eingestellt werden. Verliert der Regler seine Uhrzeit nach einem Stromausfall und diese wird über den Bus nicht wieder gesendet, so wird eine Störungsmeldung "Ungültige Uhrzeit" ausgelöst. Eine ungültige Uhrzeit wird blinkend dargestellt.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5001</td>
<td>Systemzeitausfall</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
<tr>
<td>5002</td>
<td>>1 Uhrzeitmaster</td>
<td>Nicht dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>5003</td>
<td>Ungültige Uhrzeit</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

Störungsmeldungen
5.2 Wahl der Sprache

In jedem RMU7..B sind mehrere Sprachen geladen. Beim erstmaligen Einschalten des Regelrs startet dieser mit dem Menü "Language", d. h. in englischer Sprache, unabhängig vom Sprachset des Reglertyps. In diesem Menü ist die benötigte Sprache auszuwählen. Die Sprache kann aber auch später während des Betriebs umgeschaltet werden. Je nach Reglertyp sind folgende Sprachen geladen:

<table>
<thead>
<tr>
<th>Typ</th>
<th>Sprache 1</th>
<th>Sprache 2</th>
<th>Sprache 3</th>
<th>Sprache 4</th>
<th>Sprache 5</th>
<th>Sprache 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMU7..B-1</td>
<td>Deutsch</td>
<td>Französisch</td>
<td>Italienisch</td>
<td>Spanisch</td>
<td>Portugiesisch</td>
<td></td>
</tr>
<tr>
<td>RMU7..B-2</td>
<td>Deutsch</td>
<td>Französisch</td>
<td>Niederländisch</td>
<td>Englisch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMU7..B-3</td>
<td>Dänisch</td>
<td>Finnisch</td>
<td>Norwegisch</td>
<td>Schwedisch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMU7..B-4</td>
<td>Polnisch</td>
<td>Tschechisch</td>
<td>Ungarisch</td>
<td>Russisch</td>
<td>Slowakisch</td>
<td>Bulgariisch</td>
</tr>
<tr>
<td>RMU7..B-5</td>
<td>Griechisch</td>
<td>Rumänisch</td>
<td>Slowenisch</td>
<td>Serbisch</td>
<td>Kroatisch</td>
<td>Türkisch</td>
</tr>
<tr>
<td>RMU7..B-6</td>
<td>Chinesisch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache</td>
<td></td>
<td>English</td>
</tr>
</tbody>
</table>

5.3 Wahl der Temperatur-Einheit

Die Einheit der Temperatur kann im RMU7..B zwischen °C/K und °F umgeschaltet werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einheit</td>
<td>Grad Celsius, Grad Fahrenheit</td>
<td>Grad Celsius</td>
</tr>
</tbody>
</table>

5.4 Display-Kontrast am Bediengerät

Der Kontrast des Displays kann der aktuellen Umgebung angepasst werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrast</td>
<td>0...100 %</td>
<td>50 %</td>
</tr>
</tbody>
</table>

5.5 Text-Eingabe

5.5.1 Gerätename

Der Text für den Gerätenamen wird im Willkommensbild angezeigt.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerätenamen</td>
<td>max. 20 Zeichen</td>
<td></td>
</tr>
</tbody>
</table>
5.5.2 Dateiname

Einstellwerte

Dem Dateinamen kann ein individueller Text für die eingestellte Anwendung zuge-wiesen werden:

- Hauptmenü > Inbetriebnahme > Einstellungen > oder
- Hauptmenü > Einstellungen > Texte >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dateiname</td>
<td>max. 20 Zeichen</td>
<td></td>
</tr>
</tbody>
</table>

5.5.3 Elektronische Visitenkarte

Konfiguration

Der Text für die elektronische Visitenkarte wird als Infobild angezeigt. Die elektronische Visitenkarte kann in der Zusatzkonfiguration speziell deaktiviert werden, wenn unerwünscht:

- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Diverses > Visitenkarte >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visitenkarte</td>
<td>Ja, Nein</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Einstellungen

- Hauptmenü > Inbetriebnahme > Einstellungen > oder
- Hauptmenü > Einstellungen > Texte >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visitenkartenzeile 1</td>
<td>max. 20 Zeichen</td>
<td>Visitenkartenzeile 1</td>
</tr>
<tr>
<td>Visitenkartenzeile 2</td>
<td>max. 20 Zeichen</td>
<td>Visitenkartenzeile 2</td>
</tr>
<tr>
<td>Visitenkartenzeile 3</td>
<td>max. 20 Zeichen</td>
<td>Visitenkartenzeile 3</td>
</tr>
<tr>
<td>Visitenkartenzeile 4</td>
<td>max. 20 Zeichen</td>
<td>Visitenkartenzeile 4</td>
</tr>
</tbody>
</table>
6 Betriebsarten

Es wird die Raumbetriebsart und die Anlagenbetriebsart unterschieden.

Um die Klimabedingungen im Raum zu erreichen, wird die Anlage in einer bestimmten Anlagenbetriebsart betrieben. Die Anlagenbetriebsart ist je nach Anwendung und Anforderung unterschiedlich. Sie wird direkt von der Raumbetriebsart beeinflusst.

6.1 Raum- und Anlagenbetriebsarten

Es gibt 4 Raumbetriebsarten und damit verbunden mehrere mögliche Anlagenbetriebsarten. Welche Anlagenbetriebsarten bei welcher Raumbetriebsart und welchem Grundtyp unterstützt werden, ist aus folgender Tabelle ersichtlich:

<table>
<thead>
<tr>
<th>Raumbetriebsart</th>
<th>Mögliche Anlagenbetriebsart</th>
<th>Bei Grundtyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komfort (C)</td>
<td>• Normalbetrieb (Komfort): Anlage ist permanent in Betrieb; Regelung mit Komfort-Sollwert</td>
<td>A, U</td>
</tr>
<tr>
<td></td>
<td>• Bedarfsbetrieb: Ein-/Ausschaltung der Anlage ist bedarfsgeführt; bei eingeschalteter Anlage Regelung auf die Bedarfssollwerte</td>
<td>P, C</td>
</tr>
<tr>
<td>Prekomfort (F)</td>
<td>• Normalbetrieb (Prekomfort): Energiesparender Betrieb für den belegten oder unbelegten Raum; Anlage ist permanent in Betrieb; Regelung mit Prekomfort-Sollwert</td>
<td>A, U</td>
</tr>
<tr>
<td></td>
<td>• Stützbetrieb (Prekomfort): Bedarfsabhängiger Betrieb für den belegten Raum; teilweise ausgesetzter Betrieb der Anlage; Prekomfort-Sollwert als Einschaltkriterium</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>• Umluftbetrieb (Prekomfort): Energiesparender Betrieb für den unbelegten Raum; Anlage ist permanent mit 100 % Umluft in Betrieb; Regelung mit Prekomfort-Sollwert</td>
<td>A, P, C</td>
</tr>
<tr>
<td></td>
<td>• Bedarfsbetrieb: Ein-/Ausschaltung der Anlage ist bedarfsgeführt; bei eingeschalteter Anlage Regelung auf die Bedarfssollwerte</td>
<td>P, C</td>
</tr>
</tbody>
</table>
Raumbetriebsart

<table>
<thead>
<tr>
<th>Raumbetriebsart</th>
<th>Mögliche Anlagenbetriebsart</th>
<th>Bei Grundtyp</th>
</tr>
</thead>
</table>
| Economy (.Comparator) | - Anlage Aus: Schutzfunktionen werden gewährleistet
- Stützbetrieb (Economy): Bedarfsabhängiger Betrieb für den unbelegten Raum; teilweise ausgesetzter Betrieb der Anlage; Economy-Sollwert als Einschaltkriterium
A, P¹⁾ |

¹⁾ Nachtkühlen GT P in Kombination mit RMB795 Steuerzentrale Raum-Controller möglich

Hinweis zu den Raumbetriebsarten

Bei allen Raumbetriebsarten (Komfort, Prekomfort, Economy und Schutzbetrieb) werden die Brandabschaltung / Entrauchungsfunktion der RLT-Anlage sowie die Frostschutzfunktion des Lufterwärmers gewährleistet.

In der Betriebsart Economy kann die Nachtkühlung den Stützbetrieb (Economy) oder das "Anlage Aus" übersteuern.

Umluftbetrieb: Voraussetzung für den Umluftbetrieb ist die Aktivierung der Mischluftklappe (Aussen-/Umluftklappen). Während dem Umluftbetrieb ist der Zuluftventilator oder der Zuluft- und Abluftventilator in Betrieb. Wenn während dem Umluftbetrieb die Luftqualität zu schlecht wird, d. h. die ppm-Messgröße den Grenzwert überschreitet, wird temporär auf Normalbetrieb (Komfort) umgeschaltet.

Bei den Raumbetriebsarten [Comparator] Prekomfort und [Comparator] Economy muss angegeben werden, welche Anlagenbetriebsart resultieren soll:

- [Comparator] Hauptmenü > Inbetriebnahme > Einstellungen > ..., oder
- [Comparator] Hauptmenü > Einstellungen > Betriebsart >

<table>
<thead>
<tr>
<th>Bedienebene</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Comparator] Prekomfort Anlagenbetriebsart</td>
<td>Normalbetrieb, Stützbetrieb, Umluftbetrieb</td>
<td>Normalbetrieb</td>
</tr>
<tr>
<td>[Comparator] Economy Anlagenbetriebsart</td>
<td>Kein Stützbetrieb, Stützbetrieb</td>
<td>Kein Stützbetrieb</td>
</tr>
</tbody>
</table>
6.2 Wirksame Sollwerte in Abhängigkeit der Anlagenbetriebsart (Grundtyp A)

Die Sollwerte werden je nach Anlagenbetriebsart für die Regelungen oder für das Ein- oder Ausschalten im Stützbetrieb verwendet. Die folgende Tabelle gibt einen Überblick, welche Sollwerte reglerintern in der jeweiligen Anlagenbetriebsart effektiv wirksam sind:

<table>
<thead>
<tr>
<th>Anlagenbetriebsart</th>
<th>Regler 1</th>
<th>Regler 2, Regler 3</th>
<th>Luftqualitätsregler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalbetrieb</td>
<td>Komfort-Kühl-Sollwert Komfort-Heiz-Sollwert 2-stufiger Ventilator ¹; Zuluftgrenzwert max Zuluftgrenzwert min</td>
<td>Oberer Sollwert Komfort Unterer Sollwert Komfort</td>
<td>Klappensollwert Ventilatorsollwert, Sollwert Ventilatorstufe 2</td>
</tr>
<tr>
<td>(Komfort)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalbetrieb</td>
<td>Prekomfort Kühlssollwert Prekomfort Heizzollwert 2-stufiger Ventilator ¹; Zuluftgrenzwert max Zuluftgrenzwert min</td>
<td>Oberer Sollwert Prekomfort Unterer Sollwert Prekomfort</td>
<td>Klappensollwert Ventilatorsollwert, Sollwert Ventilatorstufe 2</td>
</tr>
<tr>
<td>(Prekomfort)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stützbetrieb</td>
<td>Komfort Kühlssollwert Komfort Heizzollwert 2-stufiger Ventilator ¹; Zuluftgrenzwert max Zuluftgrenzwert min</td>
<td>Oberer Sollwert Komfort Unterer Sollwert Komfort</td>
<td>Bei Einschaltung von Luftqualitätsregler ²; Klappensollwert Ventilatorsollwert, Sollwert Ventilatorstufe 2</td>
</tr>
<tr>
<td>(Prekomfort)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umluftbetrieb</td>
<td>Prekomfort Kühlssollwert Prekomfort Heizzollwert 2-stufiger Ventilator ¹; Zuluftgrenzwert max Zuluftgrenzwert min</td>
<td>Oberer Sollwert Prekomfort Unterer Sollwert Prekomfort</td>
<td>Aussenluft-Klappe = 0%, Drehzahlgeregelter Ventilator = Min. Drehzahl Ansteuerung Ventilator = Zu- oder Zu-/Abluft</td>
</tr>
<tr>
<td>(Prekomfort)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stützbetrieb</td>
<td>Komfort Kühlssollwert Komfort Heizzollwert 2-stufiger Ventilator ¹; Zuluftgrenzwert max Zuluftgrenzwert min</td>
<td>Oberer Sollwert Komfort Unterer Sollwert Komfort</td>
<td>Bei Einschaltung von Luftqualitätsregler ²; Klappensollwert Ventilatorsollwert, Sollwert Ventilatorstufe 2</td>
</tr>
<tr>
<td>(Economy)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anlage Aus</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Economy / Schutzbetrieb)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

¹2-Punkt-Regelung der 2. Stufe bei 2-stufigen Ventilatoren: Diese Funktion steht nur zur Verfügung bei Raum/Zuluft- oder Abluft/Zuluft-Kaskadenregelung (siehe Kapitel 11.8.3)

³Bei Einschaltung des Stützbetriebs durch den Regler 1 oder Regler 2 oder Regler 3 erfolgt eine fixe Ansteuerung der Klappe bzw. Ventilators (d.h. ohne Regelung).
Die folgende Tabelle gibt einen Überblick über die massgebenden Sollwerte zum Ein/Aus-Schalten in Abhängigkeit der entsprechenden Anlagenbetriebsarten:

<table>
<thead>
<tr>
<th>Anlagenbetriebsart</th>
<th>Regler 1</th>
<th>Regler 2, Regler 3</th>
<th>Luftqualitätsregler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stützbetrieb (ː Prekomfort)</td>
<td>Prekomfort Kühlswert</td>
<td>Oberer Sollwert Prekomfort</td>
<td>Prekomfort-Luftqualitätssollwert</td>
</tr>
<tr>
<td></td>
<td>Prekomfort Heizsollwert</td>
<td>Unterer Sollwert Prekomfort</td>
<td></td>
</tr>
<tr>
<td>Umluftbetrieb (ː Prekomfort)</td>
<td>-</td>
<td>-</td>
<td>Schalten Umluftbetrieb nach Normalbetrieb (Komfort): Prekomfort-Luftqualitätssollwert</td>
</tr>
<tr>
<td>Stützbetrieb (ː Economy)</td>
<td>Economy Kühlswert</td>
<td>Oberer Sollwert Economy</td>
<td>Economy-Luftqualitätssollwert</td>
</tr>
<tr>
<td></td>
<td>Economy Heizsollwert</td>
<td>Unterer Sollwert Economy</td>
<td></td>
</tr>
</tbody>
</table>

Hinweis
Luftqualitätsregler: Bei gleichzeitiger Regelung der Mischluftklappe durch Regler 1 und Luftqualitätsregler gewinnt immer das grösse Signal. Dadurch kann die Aussenluftklappe auch bei tiefen Aussentemperaturen bis auf 100 % geöffnet werden. Dies kann bei allen Anlagenbetriebsarten vorkommen.

Wichtig
Wenn die Lufterwärmerleistung bei Aussentemperatur-Auslegungsbedingung (z. B. -10 °C) nicht für 100 % Aussenluftmenge ausreicht, kann die maximale Klappenstellung stetig in Funktion der Aussentemperatur begrenzt werden (siehe Kap. 10.5 "Mischluftklappe (Grundtyp A, P)").

6.3 Wirksame Ventilatorstufen in Abhängigkeit der Anlagenbetriebsart (Grundtyp A)

Die Ansteuerung der Ventilatoren durch die Anlagensteuerung ist von der aktuellen Anlagenbetriebsart abhängig. Grundsätzlich wird von den folgenden Ventilatorstufen ausgegangen:
- Aus / Ein bei 1-stufigen oder geregelten Ventilatoren
- Aus / Stufe 1 / Stufe 2 bei 2-stufig betriebenen Ventilatoren.

Die folgende Tabelle soll die verschiedenen Möglichkeiten und Kombinationen von 1-stufigen oder stetig geregelten Ventilatoren aufzeigen:

<table>
<thead>
<tr>
<th>Anlagenbetriebsart</th>
<th>Beschreibung der Ventilatoransteuerung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalbetrieb (ː Komfort)</td>
<td>Permanent in Stufe 1</td>
</tr>
<tr>
<td>Normalbetrieb (ː Prekomfort)</td>
<td>Permanent in Stufe 1</td>
</tr>
<tr>
<td>Stützbetrieb (ː Prekomfort)</td>
<td>Stufe 1 sobald ein Prekomfort-Einschaltkriterium erfüllt ist ¹)</td>
</tr>
<tr>
<td>Umluftbetrieb (ː Prekomfort)</td>
<td>Permanent in Stufe 1 ¹)</td>
</tr>
<tr>
<td>Stützbetrieb (ː Economy)</td>
<td>Stufe 1 sobald ein Economy-Einschaltkriterium erfüllt ist ¹)</td>
</tr>
<tr>
<td>Nachtkühlung</td>
<td>Stufe 1 sobald Einschaltkriterien der Nachtkühlung erfüllt sind</td>
</tr>
<tr>
<td>Anlage Aus</td>
<td>Permanent in Aus</td>
</tr>
</tbody>
</table>

¹) Für den Abluftventilator kann angegeben werden, ob er im Stützbetrieb oder Umluftbetrieb eingeschaltet werden soll (siehe Kapitel 10.1.13 "Stütz-/Umluftbetrieb (Grundtyp A)").
Die folgende Tabelle soll die verschiedenen Möglichkeiten und Kombinationen von 2-stufig betriebenen Ventilatoren aufzeigen:

<table>
<thead>
<tr>
<th>Anlagenbetriebsart</th>
<th>Beschreibung der Ventilatoransteuerung</th>
</tr>
</thead>
</table>
| Normalbetrieb (Komfort) | Permanent in Stufe 2 sofern der Einstellparameter "Uhrvorang Stufe 2" auf "Ja" gesetzt ist, ansonsten ist im Minimum Stufe 1 permanent eingeschaltet. Umschaltkriterien: Stufe 1 - Stufe 2
• Raum-Zulufttemperatur-Kaskadenregelung nach Wärme-/Kältebedarf
• Luftqualitätsregelung in Abhängigkeit von "Sollwert Ventilatorstufe 2" |
| Normalbetrieb (Prekomfort) | Permanent in Stufe 1 |
| Stützbetrieb (Prekomfort) | Stufe 1 oder Stufe 2 (je nach Einstellparameter) sobald ein Prekomfort-Einschaltkriterium erfüllt ist
Umschaltkriterien: Stufe 1 - Stufe 2
• Raum-Zulufttemperatur-Kaskadenregelung nach Wärme-/Kältebedarf
• Luftqualitätsregelung in Abhängigkeit von "Sollwert Ventilatorstufe 2" |
| Umluftbetrieb (Prekomfort) | Permanent in Stufe 1
Umschaltkriterien: Stufe 1 - Stufe 2
• Raum-Zulufttemperatur-Kaskadenregelung nach Wärme-/Kältebedarf
• Luftqualitätsregelung in Abhängigkeit von "Sollwert Ventilatorstufe 2" |
| Stützbetrieb (Economy) | Stufe 1 oder Stufe 2 (je nach Einstellparameter) sobald ein Economy-Einschaltkriterium erfüllt ist
Umschaltkriterien: Stufe 1 - Stufe 2
• Raum-Zulufttemperatur-Kaskadenregelung nach Wärme-/Kältebedarf
• Luftqualitätsregelung in Abhängigkeit von "Sollwert Ventilatorstufe 2" |
| Nachtkühlung | Je nach Einstellung an der Bedienzeile "Stufe" wird die Stufe 1 oder Stufe 2 eingeschaltet sobald die Einschaltkriterien der Nachtkühlung erfüllt sind. |

Anlage Aus | Permanent in Aus |

1) siehe Kapitel 10.1.5 "Schaltuhrvorang Stufe 2"
2) Für den Abluftventilator kann angegeben werden, ob er im Stützbetrieb oder Umluftbetrieb eingeschaltet werden soll (siehe Kapitel 10.1.13 "Stütz-/Umluftbetrieb (Grundtyp A)").
3) siehe Kapitel 21.1.

Hinweis
Bei allen Anlagenbetriebsarten werden die Brandabschaltung/Entrauchungsfunktion sowie die Frostschutzfunktion gewährleistet.
6.4 Betriebsartenblock

6.4.1 Raumbetriebsartvorgabe (Grundtyp A, U)

Die Raumbetriebsart für den Grundtyp A und U wird im Automatikbetrieb über die Schaltuhr resp. vom Ferien-/Sondertagsprogramm oder von diversen digitalen Eingängen (Timerfunktion, Schalten auf gewünschte Betriebsart, Raumbetriebswahlschalter, Ferieneingang, Sondertageeingang) vorgegeben. Zusätzlich kann die Betriebsart auch über das Menü "Raumbetriebsart" manuell vorgegeben werden.

6.4.2 Anlagenbetriebsartvorgabe (Grundtyp P)

Die Einschaltung des Reglers erfolgt ausschliesslich bedarfsgeführt über die Kommunikation. Dabei werden via KNX-Bus die Anlagenbetriebsarten "Bedarfsbetrieb" oder "Anlage Aus" empfangen. Der Bedarfsbetrieb kann von einem RDG-Einzelraumregler ausgelöst werden via:

- Komfort
- Economy und Über - oder Unterschreitung der Einzelraumreglersollwerte (Stützbetrieb des Einzelraumreglers)
- Entrauchen, Nachtlüften usw.

Zusätzlich kann die Schaltuhr optional für andere Regler am Bus verwendet werden (siehe Kap. 6.9.1 "Aktivieren der Schaltuhr"). In der Schaltuhr können die Raumbetriebsarten (Komfort, Prekomfort und Economy) eingestellt werden. Die externen Regler wandeln die Raumbetriebsarten in die entsprechenden Anlagenbetriebsarten um.
6.4.3 Anlagenbetriebsartvorgabe (Grundtyp C)

Die Einschaltung des Reglers auf "Bedarfsbetrieb" erfolgt bedarfsgeführt über die Kommunikation oder über den Anforderungseingang am Betriebsartenblock (siehe Kapitel 6.6 "Anlagenbetriebsartwahl über Anforderungseingang (Grundtyp P, C)"). Dabei werden via Kommunikation oder Anforderungseingang die Anlagenbetriebsarten "Bedarfsbetrieb" oder "Anlage Aus" befohlen.

Zusätzlich kann die Schaltuhr optional für andere Regler am Bus verwendet werden (siehe Kapitel 6.9.1 "Aktivieren der Schaltuhr"). In der Schaltuhr können die Raumbetriebsarten (Komfort, Prekomfort und Economy) eingestellt werden. Die externen Regler (z. B. RMU7..B mit Grundtyp U) wandeln die Raumbetriebsart in die entsprechende Anlagenbetriebsart um.

Der bedarfsgeführte Kaltwasserregler steht für folgende Anwendungen zur Verfügung:
- Kaltwasser-Vorregelung:
 Der Einschaltbefehl wird von den Sekundärreglern (z. B. RMU7..B mit Grundtyp U) mit einem Kältebedarfssignal über den Bus empfangen.
- Vorregelung für 2-Rohr-System (Heizen/Kühlen Umschaltung):
 Der Einschaltbefehl wird von den Sekundärreglern (z. B. RMU7..B mit Grundtyp A) mit einem Wärme- und Kältebedarfssignal über den Bus empfangen.

6.5 Raumbetriebsartwahl über digitale Eingänge (Grundtyp A, U)

Diese Funktion ermöglicht Eingriffe in das laufende Programm, ohne dass am Regler selbst Manipulationen vorzunehmen sind. Um diese Funktion zu aktivieren, müssen die entsprechenden digitalen Eingänge konfiguriert werden.

Folgende mögliche Eingriffsarten können konfiguriert werden:
- Timerfunktion
- Schalten auf eine gewünschte Betriebsart oder
- Raumbetriebswahlschalter

Sind gleichzeitig mehrere dieser Funktionen aktiv, so gilt folgende Priorität:
1. Raumbetriebswahlschalter oder Schalten auf eine gewünschte Betriebsart
2. Timerfunktion

Je nach gewünschter Funktion müssen folgende Einstellungen vorgenommen werden:

<table>
<thead>
<tr>
<th>Eingriffsart</th>
<th>Bedienzeile</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timerfunktion</td>
<td>Timerfunktion</td>
<td>N.Xx</td>
</tr>
<tr>
<td></td>
<td>Timerfunktion (Wirkdauer)</td>
<td>>0 min</td>
</tr>
<tr>
<td>Schalten auf eine gewünschte Betriebsart</td>
<td>Raumbetriebsart-Eingang 1</td>
<td>N.Xx</td>
</tr>
<tr>
<td></td>
<td>Raumbetriebsart-Eingang 2</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Raumbetriebsart-Vorgabe</td>
<td>Einstellen der gewünschten Betriebsart</td>
</tr>
<tr>
<td>Raumbetriebswahlschalter</td>
<td>Raumbetriebsart-Eingang 1</td>
<td>N.Xn</td>
</tr>
<tr>
<td></td>
<td>Raumbetriebsart-Eingang 2</td>
<td>N.Xm</td>
</tr>
</tbody>
</table>

Empfehlung

Den Eingängen können beliebige digitale Eingänge zugeordnet werden. Aus Gründen der Übersicht wird empfohlen, die Eingänge nebeneinander anzuordnen.
Eine Fehlkonfiguration bewirkt folgendes:

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Wert</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumbetriebsart-Eingang 1</td>
<td>---</td>
<td>Keine Wirkung</td>
</tr>
<tr>
<td>Raumbetriebsart-Eingang 2</td>
<td>N.Xx</td>
<td></td>
</tr>
</tbody>
</table>

6.5.1 Timerfunktion

Der für die Timerfunktion gewählte digitale Eingang erlaubt es, den Regler für eine eingestellte Zeit in die Komfort-Betriebsart (\(\square\)) zu schalten.

Konfiguration

- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Betriebsart >

Einstellwerte

- Hauptmenü > Inbetriebnahme > Einstellungen >.... oder
- Hauptmenü > Einstellungen > Betriebsart >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timerfunktion</td>
<td>0…720 min</td>
<td>60 min</td>
</tr>
</tbody>
</table>

Funktionsdiagramme

A

B

C

Legende

A Schaltuhr (\(\square\))
B Schaltbefehl über digitalen Eingang für "Timerfunktion", mit eingestellter Zeit für die Komfort-Betriebsart
C Wirksame Betriebsart
6.5.2 Schalten auf die gewünschte Betriebsart

Der digitale Eingang erlaubt es, die Anlage dauernd in die gewünschte Betriebsart zu schalten. Über die Bedienebene "Raumbetriebsart-Vorgabe" kann die gewünschte Betriebsart eingestellt werden. Diese Betriebsart herrscht solange, bis kein Signal mehr am Steuereingang anliegt. Erst dann gilt wieder das normale Wochenprogramm.

Konfiguration

- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Betriebsart >

Einstellwerte

- Hauptmenü > Einstellungen > Betriebsart >

#### Bedienzeile	Einstellbare Werte / Bemerkung
Raumbetriebsart-Vorgabe | ---, N.X1, N.X2, ... (nur digitale Eingänge)

6.5.3 Raumbetriebswahlschalter

Zwei digitale Eingänge erlauben es, die Anlage über einen externen Schalter dauernd in eine gewünschte Betriebsart zu schalten. Die gewünschte Betriebsart herrscht so lange, bis kein Signal mehr anliegt. Erst dann gilt wieder das normale Wochenprogramm.

Konfiguration

- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Betriebsart >

#### Bedienzeile	Einstellbare Werte / Bemerkung
Raumbetriebsart-Vorgabe | ❓ Komfort, ❏ Prekomfort, ❇ Economy, ❗ Schutzbetrieb

#### Status Steuereingang 1	Status Steuereingang 2	Resultierende Betriebsart
Ruhestellung | Ruhestellung | ❓ Auto
Arbeitsstellung | Arbeitsstellung | ❏ Economy
Arbeitsstellung | Ruhestellung | ❏ Prekomfort
Ruhestellung | Arbeitsstellung | ❗ Komfort

Beispiel

![Diagramm](image)
Anwendungsbeispiele
- Taster (Restaurant: 2. Stufe Lüftung) auf vorbestimmten Timerfunktionseingang "N.X..." verdrahtet:
 Wenn der Taster für mehr als 3 Sekunden gedrückt wird, ist die Betriebsart "Komfort" für die eingestellte Zeit (Timerfunktion) wirksam
- Fensterkontakt auf vorbestimmten Raumbetriebsart-Eingang 1 "N.X..." verdrahtet, Raumbetriebsart-Vorgabe = Economy:
 Solange das Fenster offen bleibt, ist die Betriebsart "Economy" wirksam

6.5.4 Fehlerbehandlung

Fehler im Betrieb
Digitale Signale können nicht überwacht werden. Fehlen die Eingänge, wird dies gleich interpretiert wie oben beschrieben.

Empfehlung
Es wird empfohlen, dass die potentialfreien Kontakte für die digitalen Eingänge in Ruhestellung offen sind, damit der Regler bei einem Leitungsunterbruch im Automatikbetrieb arbeiten kann.

6.6 Anlagenbetriebsartwahl über Anforderungseingang (Grundtyp P, C)

![Diagram](image)

Ist der Regler als bedarfsgeführte Regelung einer Luftaufbereitungsanlage (Grundtyp P) oder als bedarfsgeführter Kaltwasserregler (Grundtyp C) konfiguriert, kann er über einen universellen Eingang eingeschaltet werden. Auf diese Weise kann ein Verbund auch mit nicht-kommunikativen Reglern aufgebaut werden. Um diese Funktion zu aktivieren, muss der entsprechende Eingang konfiguriert werden. Diese Funktion kann nur für Grundtyp P oder C konfiguriert werden.

Konfiguration	Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Betriebsart >
Einstellwerte	Hauptmenü > Inbetriebnahme > Einstellungen >...
	Hauptmenü > Einstellungen > Betriebsart >

Der Anforderungseingang kann sowohl ein digitales als auch ein analoges Signal verarbeiten. Über die Einstellwerte "Grenzwert Ein" und "Grenzwert Aus" wird aus einem anologen Signal ein Anforderungssignal "Ein/Aus" erzeugt.

<table>
<thead>
<tr>
<th>Grenzwert Ein</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängig von gewählten Typ</td>
<td>Je nach Typ</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grenzwert Aus</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängig von gewählten Typ</td>
<td>Je nach Typ</td>
<td></td>
</tr>
</tbody>
</table>

6.6.1 Wirkungsweise Grundtyp P

Liegt ein Signal an der Klemme des Eingangs an, so wird dieses Signal als Anforderung an eine Luftaufbereitungsanlage ausgewertet und die Regelung wird aktiviert. Die Sollwertbildung ist im Kapitel 12 beschrieben.

Hinweis
Es ist sicherzustellen, dass vor dem Einschalten der Ventilatoren die Luftklappen der VVS-Antriebe geöffnet sind.
6.6.2 Wirkungsweise Grundtyp C

Liegt ein Signal an der Klemme des Eingangs an, so wird dieses Signal als Kaltwasser-Anforderung interpretiert und die Regelung geht in Betrieb. Die Sollwertbildung ist im Kapitel 13 "Vorlauftemperaturregler, bedarfsgeführt (Grundtyp C)" beschrieben.

6.7 Raumbetriebsartwahl (Grundtyp A, U)

Betriebsartwahl bei den Grundtypen A und U

Die Raumbetriebsartwahl steht bei den Grundtypen A und U immer zur Verfügung.

Anzeigewerte

Hauptmenü > Raumbetriebsart >

Hinweis

Die Vorgabe bleibt auch bei einem Netzausfall gespeichert.

6.7.1 Vorgabe

Es stehen folgende Betriebsarten zur Auswahl:

Hauptmenü > Raumbetriebsart >

Einstellwerte

Bedienzeile	Bereich	Werkeinstellung
Vorgabe	Auto	Auto
Komfort		
Prekomfort		
Economy		
Schutzbetrieb		

Hinweis

Regeln ein Lüftungsregler und ein Heizungsregler oder mehrere Lüftungsregler gemeinsam den gleichen Raum und sind der gleichen geografischen Zone zugeordnet, so wirkt die Vorgabe auf alle Regler in der gleichen geografischen Zone (Kapitel 6.13.1 "Raumregelungskombination mit mehreren Lüftungsreglern" oder siehe Kapitel 6.13.2 "Raumregelungskombinationen mit Heizungsregler").

6.7.2 Zustand

Der aktuelle Raumbetriebsartzustand hat folgende Positionen:

- Komfort
- Prekomfort
- Economy
- Schutzbetrieb
6.7.3 Grund (Grundtyp A, U)

Die verschiedenen Benutzereingriffe werden als Grund angegeben. Folgende Benutzereingriffe sind möglich (Reihenfolge entspricht der Priorität):
- Raumbetriebsartkontakt
- Raumbetriebswahlschalter (Vorgabe im Menü "Raumbetriebsart")
- Raumgerät-Präsenztaste
- Timerfunktion des Raumgeräts
- Sondertag
- Ferien
- Schaltuhr

6.8 Anlagenbetriebsartwahl (Grundtyp A, P, C, U)

Über das Menü "Anlagenbetrieb" kann die Anlage ausgeschaltet werden.

Der aktuelle Anlagenzustand sowie der Grund für diesen Anlagenzustand werden im gleichen Bild angezeigt.

6.8.1 Vorgabe

Es stehen folgende Betriebsarten zur Auswahl:

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Anlagenbetrieb > Bedienzeile</td>
</tr>
<tr>
<td>Vorgabe</td>
</tr>
</tbody>
</table>

Bei Vorgabe "Aus" bleiben sicherheitsrelevante Funktionen der Anlage (wie Frostschatz, Entrauchen), und der Aggregate (wie Start, Stopp, Einschalten nach Aussentemperatur, ...) aktiv.

Hinweis

Die Anlagenbetriebsvorgabe wirkt nur lokal und nicht auf andere Regler über den Bus in der gleichen geografischen Zone.

6.8.2 Zustand

Der aktuelle Anlagenbetriebszustand hat folgende Positionen:
- Ein
- Aus
- Transit (siehe nächsten Abschnitt)
6.8.3 Grund

Die verschiedenen Funktionen, die die Anlage ein- und ausschalten können, werden als Grund angegeben. Folgende Angaben sind möglich:

- Störung
- Entrauchung (Grundtyp A und P)
- Stoppvorgabe 1 Zuluftventilator (Grundtyp A und P)
- Betriebsartkontakt (Grundtyp A und U)
- Anlagenbetriebswahlschalter
- Benutzeranforderung Raum (Grundtyp A und U)
- Anforderung (Grundtyp P und C)
- Keine Anforderung (Grundtyp P und C)
- Stützbetrieb (Grundtyp A)
- Nachtkühlung (Grundtyp A)
- Einschaltoptimierung (Grundtyp A)

Die Konfiguration des Grunds kann einem Relaisausgang zugeordnet werden (Kapitel 6.12).
Alle anderen Funktionen (wie Vorwärmfunktion) werden nur indirekt angezeigt, indem der aktuelle Betrieb als "Transit" angegeben wird. Transit bedeutet also, dass Teile der Anlage ein- oder ausgeschaltet sind, aber noch nicht die gesamte Anlage.

Anzeigewerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zustand</td>
<td></td>
</tr>
<tr>
<td>Grund</td>
<td></td>
</tr>
</tbody>
</table>
6.9 Schaltuhrbetriebsarten \(\phi, \; \chi, \; \varphi \)
(Grundtyp A, P, C, U)

Der Regler arbeitet nach dem Wochenprogramm, das an der Wochenschaltuhr eingeegeben ist. Unterschiedliche Zeiten von Woche zu Woche sind nicht möglich.
Mit dem eingegebenen Programm steuert die Wochenschaltuhr den Wechsel der Betriebsarten und die damit verbundenen Sollwerte. Die Bedienung der Wochenschaltuhr ist in der Bedienungsanleitung B3144 beschrieben.

6.9.1 Aktivieren der Schaltuhr

Bei den Grundtypen A und U ist die Wochenschaltuhr immer aktiv.
Beim Grundtyp P und C kann die Schaltuhr 1 für andere Regler, die sich am Bus befinden, verwendet werden. Dazu muss sie aktiviert werden.
Eine aktive Schaltuhr ist immer Master. Am RMU-Regler muss eine geografische Zone eingegeben werden. Die Schaltuhr wirkt dann in dieser Zone.

Konfiguration

| Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Schaltuhr 1 > (bei Grundtyp P, C) |
|---|---|---|
| Schaltuhr | Nein, Ja | Aktivieren der Schaltuhr für Grundtyp P, C |

6.9.2 Zeitschalteinträge

Für folgende Tage kann ein eigenes Tagesprofil gewählt werden.

Einstellwerte

| Hauptmenü > Schaltuhr > (bei Grundtyp A, U) |
| Hauptmenü > Schaltuhr 1 > (bei Grundtyp P, C) |

<table>
<thead>
<tr>
<th>Bedienelement</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montag bis Sonntag</td>
<td>Komfort, Prekomfort, Economy</td>
<td>06:00 Komfort 22:00 Economy</td>
</tr>
<tr>
<td>Sondertag</td>
<td>Komfort, Prekomfort, Economy</td>
<td>06:00 Komfort 22:00 Economy</td>
</tr>
</tbody>
</table>

Das Sondertag-Programm ist ein Tagesprogramm, welches entweder über das Ferienprogramm oder über einen externen Kontakt aktiviert werden kann.

Pro Tag können maximal 6 Einträge in das Tagesprogramm eingegeben werden. Für einen Eintrag müssen eingegeben werden:
- Zeit, ab welcher die gewünschte Betriebsart gelten soll
- Gewünschte Betriebsart
Der nachfolgende Tag übernimmt immer die Betriebsart vom Vortag, bis ein eigener Eintrag folgt.

Die Betriebsart vom Vortag wird als gestrichelte Linie dargestellt.

An einem Tag ohne Einträge, wird die Betriebsart des Vortages für den ganzen Tag übernommen und als gestrichelte Linie dargestellt.
• Der Sondertag endet mit derselben Betriebsart, wie er beginnt.
• Der dem Sondertag folgende Tag startet mit der Betriebsart des Tagesprogramms des vorangehenden Tages, welches ohne Sondertag gültig gewesen wäre (im folgenden Beispiel: Dienstag).

Wurden für einen Tag alle Einträge eingegeben, so kann dieser Tag auf die anderen Tage kopiert werden. Wurde also z. B. der Montag eingegeben, so kann das gleiche Profil auf alle Werkstage (Montag - Freitag) kopiert werden und muss nicht nochmals eingegeben werden.

6.9.3 Freigabe Raumgerät bei Schaltuhrbetriebsart

<table>
<thead>
<tr>
<th>Komfort durch Raumgerät = Ja</th>
<th>Komfort durch Raumgerät = Nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuelles Ändern von Economy auf Komfort durch QAX3x.x und QAW740 ist möglich</td>
<td>Manuelles ändern von Economy auf Komfort durch QAX3x.x und QAW740 ist nicht möglich</td>
</tr>
</tbody>
</table>

6.9.4 Kommunikation

Eine Schaltuhr wirkt immer in der für den Regler eingestellten "Geografische Zone (Apartm.).". Ist der Regler über die Kommunikation mit anderen Reglern verbunden, so kann die Wochenschaltuhr auf verschiedene Regler verteilt oder empfangen werden. Je nach gewünschter Betriebsart müssen folgende Einstellungen vorgenommen werden:

<table>
<thead>
<tr>
<th>Gewünschte Betriebsart</th>
<th>Bedienzeile</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltuhrbetrieb "Autonom"</td>
<td>Geografische Zone (Apartm.)</td>
<td>----</td>
</tr>
<tr>
<td>Schaltuhrbetrieb "Master"</td>
<td>Geografische Zone (Apartm.)</td>
<td>1...126</td>
</tr>
<tr>
<td>Schaltuhrbetrieb "Slave"</td>
<td>Geografische Zone (Apartm.)</td>
<td>----</td>
</tr>
</tbody>
</table>

1) Slavebetrieb ist nur im Grundtyp A und U wählbar
Autonom
Die Schaltuhr wirkt nur lokal für diesen Regler.
Die Schaltuhr hat keine Wirkung auf andere Regler am Bus.

Master
Die Schaltuhr in diesem Regler ist aktiv.
Die Schaltuhr wirkt auch auf alle anderen Regler, bei denen die lokale Schaltuhr ausgeschaltet ist und die als Schaltuhr-Slave-Zone, die geografische Zone dieses Reglers eingestellt haben.

Slave
Die Schaltuhr in diesem Regler ist nicht aktiv.
Es wirkt die externe Schaltuhr, die in der geografischen Zone wirkt, die an diesem Regler als Schaltuhr-Empfangszone (Schaltuhr-Slave (Apartment)) eingestellt ist.
Die externe Schaltuhr muss als Schaltuhr-Master eingestellt sein.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geografische Zone (Apartm.)</td>
<td>----, 1...126</td>
<td>----</td>
</tr>
<tr>
<td>Schaltuhr-Slave (Apartment)</td>
<td>----, 1...126</td>
<td>----</td>
</tr>
<tr>
<td>Schaltuhrbetrieb *</td>
<td>Autonom, Master, Slave</td>
<td></td>
</tr>
</tbody>
</table>

* Informationszeile: Ergebnis der Einstellung

6.9.5 Fehlerbehandlung

Störungsmeldungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5102</td>
<td>>1 Schaltuhr in Anlage 1</td>
<td>Nicht dringende Meldung; muss quittiert werden</td>
</tr>
</tbody>
</table>

Erwartet der Regler ein Schaltuhrsignal vom Bus und dieses wird nicht gesendet, erfolgt eine Fehlermeldung "Systemschaltuhrausfall Anl.1". Es wird fix auf die Betriebsart Komfort eingestellt.

Störungsmeldungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5101</td>
<td>Systemschaltuhrausfall Anl.1</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>
6.10 Ferien / Sondertage (Grundtyp A, P, C, U)

6.10.1 Kommunikation

Ist der Regler über die Kommunikation mit anderen Reglern verbunden, so kann das gleiche Ferien/Sondertagsprogramm auf verschiedene Regler verteilt werden. Als Master sind verschiedene Quellen möglich. Dies kann am Regler entsprechend eingeben werden (siehe Kapitel 28.2.4 "Untermenü "Ferien / Sondertage"""). Folgende Einstellungen sind möglich:

- Autonom (sendet nicht und empfängt nicht)
- Ab Bus: Slave (empfängt das Ferien/Sondertagsprogramm vom Bus)
- Am Bus: Master (sendet das Ferien/Sondertagsprogramm über den Bus)

- Die Wirkung der einzelnen Eingaben ist wie folgt:

<table>
<thead>
<tr>
<th>Eingabe</th>
<th>Wirkung</th>
<th>Grafik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonom</td>
<td>Das Ferien/Sondertagsprogramm wirkt nur lokal für diesen Regler. Das Ferien/Sondertagsprogramm hat keine Wirkung auf die unter Kommunikation eingegebene Ferien/Sondertage-Zone.</td>
<td></td>
</tr>
<tr>
<td>Slave</td>
<td>Das Ferien/Sondertagsprogramm in diesem Regler ist nicht aktiv. Es wirkt das externe Ferien/Sondertagsprogramm, das die gleiche Ferien/Sondertage-Zone eingestellt hat. Das externe Ferien/Sondertagsprogramm muss als Master- Ferien/Sondertagsprogramm eingestellt sein.</td>
<td></td>
</tr>
<tr>
<td>Master</td>
<td>Das Ferien/Sondertagsprogramm in diesem Regler ist aktiv. Das Ferien/Sondertagsprogramm wirkt auch auf alle anderen Regler, bei denen das Ferien/Sondertagsprogramm ausgeschaltet ist (Slave) und die in der gleichen Ferien/ Sondertage-Zone liegen.</td>
<td></td>
</tr>
</tbody>
</table>

Die Einstellung der Ferien/Sondertage-Zone ist unter Kapitel 26 "Kommunikation" beschrieben.

6.10.2 Ferien

Als Ferien gelten Perioden, während denen das Gebäude nicht genutzt wird, deren Beginn und Dauer im Voraus bekannt sind.

Beispiele

- Betriebsferien in gewerblich benutzten Räumen und Gebäuden
- Schulferien in Schulhäusern
- Feiertage
Es kann eingegeben werden, ob während der Ferien die Betriebsart Economy oder Schutzbetrieb gelten soll.

6.10.3 Sondertage

Als Sondertage gelten Perioden, während denen das Gebäude speziell genutzt wird und deren Beginn und Dauer im Voraus bekannt sind.

Beispiele

- Besuchstage in Heimen
- Kirchliche Feiertage in Kirchen

Im Wochenprogramm kann ein zusätzliches Tagesprogramm (Sondertag) als Sondertagsprogramm eingegeben werden.

Die Einstellung ist im Kapitel 6.9.2 "Zeitschalteinträge" beschrieben.

Ist der Regler (Master) über die Kommunikation mit anderen Reglern verbunden, kann an jedem Regler (Slave) ein eigenes Tagesprogramm als Sondertag eingegeben werden. Der Zeitpunkt des Sondertags ist eine Information des Masters und gilt für alle Regler in der gleichen Ferien/Sondertage-Zone.

6.10.4 Kalendereintrag

Es können maximal 16 Einträge eingegeben werden. Die Einträge werden in chronologischer Reihenfolge sortiert. Für jeden Eintrag muss eingegeben werden:

- Datum, Jahr und Zeit des Beginns
- Datum und Zeit des Endes
- Anlass für den Eintrag (Ferien oder Sondertag)

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eintrag 1...16</td>
<td>Beginn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ende</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anlass</td>
<td></td>
</tr>
</tbody>
</table>

Jährlich wiederholende Ferien oder Sondertage können eingegeben werden, indem bei der Jahreseinstellung ein Stern "*" gesetzt wird. Ansonsten werden die Einträge automatisch gelöscht, nachdem Ferien oder Sondertage abgearbeitet worden sind.

Priorität

Überlappen sich zwei Einträge, so gilt: Sondertage haben Priorität vor Ferien. So kann auch ein Sondertag während der Ferien im Voraus vorgemerkt werden.

Beispiel

Ein Beispiel für Sondertage während der Ferien ist: Theaterrauführung im Schulhaus.

Hinweis

Nachdem die Ferienperiode oder der Sondertag beendet ist, geht der Betrieb wieder nach dem normalen Wochenprogramm. In dieser Übergangsphase kann es vorkommen, dass die Startoptimierungen (z. B. Schnellaufheizung bei der Heizungsanlage) nicht rechtzeitig gestartet werden kann. Es empfiehlt sich deshalb, das Ende der Ferienperiode etwas vorzulegen, damit die Anlage genügend Zeit hat, sich auf die entsprechenden Sollwerte wieder einzuregeln.
6.10.5 Steuereingang "Ferien/Sondertage"

Die Ferien und Sondertage können auch über digitale Eingänge aktiviert werden. Dazu müssen digitale Eingänge zugeordnet werden.

<table>
<thead>
<tr>
<th>Konfiguration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Zusatzzkonfiguration > Betriebsart > (bei Grundtyp A, U)</td>
</tr>
<tr>
<td>Hauptmenü > Inbetriebnahme > Zusatzzkonfiguration > Schaltuhr 1 > (bei Grundtyp P, C)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienezeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferieneingang</td>
<td>---, N.X1, N.X2,... (nur digitale Eingänge)</td>
</tr>
<tr>
<td>Sondertageeingang</td>
<td>---, N.X1, N.X2,... (nur digitale Eingänge)</td>
</tr>
</tbody>
</table>

Diese Eingänge haben nur eine Wirkung, wenn der Ferien/Sondertage-Betrieb als "Autonom" oder als "Master" eingestellt ist.

Eine Aktivierung eines Sondertages oder einer Ferienperiode über die digitalen Eingänge wird nicht im Ferien/Sondertagsprogramm eingetragen und ist so auch nicht jährlich wiederkehrend.

Sondertag

Der digitale Eingang erlaubt es, ohne Eingriffe am Regler die Anlage dauernd auf das im Wochenprogramm eingestellte Sondertagsprogramm zu schalten.

Wird am konfigurierten Eingang ein Dauersignal angelegt, so wird das Sondertagsprogramm aktiv. Dieses herrscht solange, bis kein Signal mehr anliegt. Erst dann gilt wieder das normale Wochenprogramm.

Ferien

Der digitale Eingang erlaubt es, ohne Eingriffe am Regler die Anlage dauernd auf die Betriebsart "Ferien" zu schalten.

Wird am konfigurierten Eingang ein Dauersignal angelegt, so geht die Anlage in die Betriebsart "Ferien". Diese herrscht solange, bis kein Signal mehr anliegt. Erst dann gilt wieder das normale Wochenprogramm.

Priorität

Bei gleichzeitiger Aktivierung eines Sondertages oder einer Ferienperiode über die Steuerschalter und einem Eintrag im Kalender, gilt folgende Prioritätstabelle:

- Steuerschalter "Sondertag"
- Steuerschalter "Ferien"
- Eintrag "Sondertag" im Kalender
- Eintrag "Ferien" im Kalender

Hinweis

Sind auch andere Regler in derselben Ferien/Sondertage-Zone als Slaves konfiguriert, so wirken die digitalen Eingänge auf alle diese Regler.

6.10.6 Fehlerbehandlung

Erwartet der Regler ein Ferien/Sondertagsignal vom Bus und dieses wird nicht gesandt, erfolgt eine Fehlermeldung "Ferien-/Sondertagsprogr'ausfall". Es werden die Betriebsarten vom Wochenprogramm ohne Berücksichtigung von Ferien/Sondertags- einträgen verwendet.

<table>
<thead>
<tr>
<th>Störungsmeldungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>5201</td>
</tr>
<tr>
<td>5202</td>
</tr>
</tbody>
</table>

Für die Auswertung der Priorität im Ferien/Sondertagsprogramm werden nur die beiden ersten Einträge berücksichtigt. Werden mehr als zwei sich überlappende Einträge eingegeben, so kann es passieren, dass der Sondertag nicht mehr Priorität gegenüber den Ferien hat.
6.11 Raumbetriebsart-Relais (Grundtyp A, P, C, U)

6.11.1 Wirkungsweise

Zweck
Die Ausgänge "Betriebsart-Relais 1" und "Betriebsart-Relais 2" am Funktionsblock Betriebsart (Grundtyp A und U) bzw. am Funktionsblock Schaltuhr 1 (Grundtyp P und C) erlauben es, die resultierende Raumbetriebsart an zwei Relais Qx des Reglers auszugeben.

Mögliche Anwendung
Weitergabe der resultierenden Raumbetriebsart von den Relaisausgängen Qx des RMU-Reglers an einen Synco™200-Regler:

![Diagramm der Relaisausgänge]

Legende
N1: RMU7..B
N2: Synco™200 RLU2..

Konfiguration
- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Betriebsart > (Grundtyp A, U)
- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Schaltuhr 1 > (Grundtyp P, C)

Bedienzeile	Einstellbare Werte / Bemerkung
Betriebsart-Relais 1 | ---, N.Q1 ... (nur freie Relais)
Betriebsart-Relais 2 | ---, N.Q1 ... (nur freie Relais)

Im Menü Einstellungen kann zu jeder Raumbetriebsart definiert werden, welches Betriebsart-Relais schalten soll. So ist volle Flexibilität gewährleistet und eine Vielzahl von Anwendungen möglich.

Einstellungen
- Hauptmenü > Einstellungen > Betriebsart > (Grundtyp A, U)
- Hauptmenü > Einstellungen > Schaltuhr 1 > (Grundtyp P, C)

Bedienzeile	Einstellbare Werte	Werkeinstellung
Komfort-Relaisansteuerung | ---, R1, R2, R1 + R2 | ---
Prekomfort-Relaisansteuerung | ---, R1, R2, R1 + R2 | ---
Economy-Relaisansteuerung | ---, R1, R2, R1 + R2 | R2
Schutzbetr.-Relaisansteuerung | ---, R1, R2, R1 + R2 | R1 + R2

Die vorgängig unter "Einstellungen" aufgeführten, einstellbaren Werte für die Betriebsart-Relais haben folgende Bedeutung:

Eingestellter Wert	Status Relais R1	Status Relais R2
--- | Ruhestellung | Ruhestellung |
R1 | Arbeitsstellung | Ruhestellung |
R2 | Ruhestellung | Arbeitsstellung |
R1 + R2 | Arbeitsstellung | Arbeitsstellung |
Hinweis zur Werkeinstellung

Die Werkeinstellung wurde so gewählt, dass die digitalen Ausgänge direkt mit den digitalen Eingängen des Synco™ 200-Reglers verbunden werden können.

Weil die Synco™ 200-Regler die Betriebsart "Prekomfort" nicht kennen, schaltet der RMU-Regler bei "Prekomfort" die Synco™ 200-Regler entsprechend in die Betriebsart "Komfort". Diese Einstellung kann selbstverständlich den Bedürfnissen entsprechend angepasst werden.

Raumbetriebsarten verbinden

Die digitalen Ausgangsrelais 1/2 können mit den Raumbetriebsarteingängen 1/2 eines anderen RMU7..B (Betriebsartenblock) oder RMB795 (Funktionsblöcke Raumgruppe) verbunden werden.

Wenn das "Betriebsart-Relais 1" auf den "Raumbetriebsart-Eingang 1" und das "Betriebsart-Relais 2" auf den "Raumbetriebsart-Eingang 2" verdrahtet sind, dann muss die Zuweisung folgendermassen aussehen:

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Zuweisung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komfort</td>
<td>R2</td>
</tr>
<tr>
<td>Prekomfort</td>
<td>R1</td>
</tr>
<tr>
<td>Economy</td>
<td>R1 + R2</td>
</tr>
<tr>
<td>Schutzbetrieb</td>
<td>---</td>
</tr>
</tbody>
</table>

6.11.2 Funktionskontrolle / Verdrahtungstest

Zweck

Während des Verdrahtungstests können die Raumbetriebsart-Ausgänge direkt geschaltet und so deren Funktion überprüft werden.

Einstellwerte

| Hauptmenü > Inbetriebnahme > Verdrahtungstest > Ausgänge > (bei Grundtyp A, U) |
|---|---|
| Bedienzeile | Bemerkung |
| Betriebsart | ----, Komfort, Prekomfort, Economy, Schutzbetrieb |

| Hauptmenü > Inbetriebnahme > Verdrahtungstest > Ausgänge > (bei Grundtyp P, C) |
|---|---|
| Bedienzeile | Bemerkung |
| Schaltuhr 1 | ----, Komfort, Prekomfort, Economy, Schutzbetrieb |
6.12 Anlagenbetriebsart-Relais

(Grundtyp A, P, C, U)

6.12.1 Wirkungsweise

Der Ausgang "Grund" am Funktionsblock Betriebsart ermöglicht es, die Anlagenbetriebsart über ein Relais auszugeben (Kapitel 6.8).

Mögliche Anwendung

Die Weitergabe des Anlagenbetriebsart-Relais für die externe Verarbeitung (z. B. für das Öffnen von Oberlichtern oder Fenstern bei aktiver Nachtkühlung).

![Diagram of Anlagenbetriebsart-Relais](image)

Grundtyp A, U Grundtyp P, C

Konfiguration

<table>
<thead>
<tr>
<th>Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Betriebsart ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Anlagenbetriebsart-Relais</td>
</tr>
</tbody>
</table>

Folgende Funktionen stehen in den entsprechenden Grundtypen für die Anlagenbetriebsart zur Auswahl:

<table>
<thead>
<tr>
<th>Bezeichnung "Grund"</th>
<th>Grundtyp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Störung</td>
<td>X</td>
</tr>
<tr>
<td>Entrauchung</td>
<td>X</td>
</tr>
<tr>
<td>Stoppvorgabe Zuluftvent.</td>
<td>X</td>
</tr>
<tr>
<td>Betriebsartkontakt</td>
<td>X</td>
</tr>
<tr>
<td>Anlagenbetriebswahlschalter</td>
<td>X</td>
</tr>
<tr>
<td>Benutzeranforderung Raum</td>
<td>X</td>
</tr>
<tr>
<td>Anforderung</td>
<td>-</td>
</tr>
<tr>
<td>Keine Anforderung</td>
<td>-</td>
</tr>
<tr>
<td>Stützbetrieb</td>
<td>X</td>
</tr>
<tr>
<td>Nachtkühlung</td>
<td>X</td>
</tr>
<tr>
<td>Einschaltoptimierung</td>
<td>X</td>
</tr>
</tbody>
</table>

Im Menü Einstellungen kann definiert werden, bei welcher Anlagenbetriebsart das Relais schalten soll.

Einstellungen

<table>
<thead>
<tr>
<th>Hauptmenü > Einstellungen > Betriebsart ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Anlagenbetriebsart-Relais</td>
</tr>
</tbody>
</table>

Hinweis

Die Einstellung ist Grundtyp unabhängig und wird überall gleich dargestellt.
6.12.2 Funktionskontrolle und Verdrahtungstest

Zweck
Während des Verdrahtungstests können die Relais Ausgänge direkt geschaltet und so
deren Funktion überprüft werden.

Einstellwerte
Hauptmenü > Inbetriebnahme > Verdrahtungstest > Ausgänge >
<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anlagenbetriebsart-Relais</td>
<td>Aus, Ein</td>
</tr>
</tbody>
</table>

6.13 Raumregelungskombinationen (Grundtyp A)

Unter dem Begriff Raumregelungskombination versteht man, die kombinierte Regelung
eines Raumes durch einen Heizungsregler und einen Lüftungsregler oder mehrerer
Lüftungsregler, die am gleichen Bus angeschlossen sind.
Diese arbeiten mit der gleichen Raumbetriebsart und tauschen weitere Informationen
untereinander aus. Dazu muss bei diesen Reglern die gleiche geografische Zone
eingestellt sein.
Mit der Bedienzeile Raumregelungskombination definiert man das Verhalten des
einzelnen Gerätes innerhalb der Kombination.

Konfiguration
Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Betriebsart >
<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumregelungskombination</td>
<td>Master</td>
<td>Master</td>
</tr>
<tr>
<td></td>
<td>Slave externer Sollwert</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slave interner Sollwert</td>
<td></td>
</tr>
</tbody>
</table>

Die Bedeutung der möglichen Einstellungen der Raumregelungskombination wird in
den nachfolgenden Unterkapiteln erklärt.

6.13.1 Raumregelungskombination mit mehreren
Lüftungsreglern

Regeln mehrere Lüftungsregler gemeinsam den gleichen Raum (z. B. für die
Temperaturregelung einer Lagerhalle), so haben sie die Möglichkeit, untereinander
über den KNX-Bus Informationen, wie die Raumtemperatur, die Betriebsart und die
Sollwerte, auszutauschen.
Bei allen Reglern muss die gleiche geografische Zone (siehe Kapitel 26
"Kommunikation") eingestellt sein, alle Regler arbeiten mit der gleichen
Raumbetriebsart.
Die Raumregelungskombination muss an einem Lüftungsregler auf Master eingestellt
werden, bei allen anderen auf Slave.
Einstellung für Slave-Lüftungsregler

Die Slave-Lüftungsregler arbeiten innerhalb der Kombination mit der gleichen Betriebsart wie der Master. Für die Sollwerte besteht die Möglichkeit mit gleichen Sollwerten wie der Master oder mit individuellen Sollwerten zu arbeiten.

<table>
<thead>
<tr>
<th>Fall</th>
<th>Raumregelungskombination</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemeinsame Raumbetriebsart, individuelle Sollwerte</td>
<td>"Slave interner Sollwert"</td>
<td>Der Slave-Lüftungsregler arbeitet mit seinen internen Heiz-/Kühl-Sollwerten</td>
</tr>
</tbody>
</table>
6.13.2 Raumregelungskombinationen mit Heizungsregler

Regeln ein Heizungsregler und ein Lüftungsregler gemeinsam den gleichen Raum so muss die Raumregelungskombination am Lüftungsregler auf "Master" eingestellt werden.

6.14 Prioritäten der Betriebsarten

Für den Betrieb der Anlage gelten folgende Prioritäten:

1. EIN/AUS während des Verdrahtungstests
2. AUS durch Ventilatorüberwachung (Strömungsmeldung, Überlastmeldung), zusätzlich fällt auch das Ventilator-Freigaberelais ab
3. EIN durch Entrauchung
4. AUS durch eine oder mehrere der folgenden Funktionen:
 - Brandabschaltung
 - Störungsmeldungen mit Anlagenstopp
 - Zuluftventilator Stoppvorgaben 1 oder 2
 - Pumpenstörung bei gleichzeitig tiefen Aussentemperaturen
5. Simulation VVS (Grundtyp P)
6. AUS durch Anlagenbetriebsartwahl
7. AUS oder EIN durch Raumbetriebsartkontakt (Raumbetriebswahlschalter oder Schalten auf eine gewünschte Betriebsart)
8. Komfort, Prekomfort oder Economy durch Raumbetriebsartwahl, die Raumbetriebsartwahl kann sowohl über die lokale Bedienung (RMZ790, RMZ791) wie auch über die Fernbedienung (QAW740, RMZ792, ACS) erfolgen, dabei gewinnt immer die letzte Bedienhandlung
9. Komfort durch die Timerfunktion
10. Komfort, Prekomfort, Economy oder Schutzbetrieb über die Kommunikation von externer Schaltuhr (bei Raumregelungskombination)
11. Sondertagsprogramm (Komfort, Prekomfort oder Economy je nach Einstellung) durch Sondertageingang
12. Ferien (Economy oder Schutzbetrieb je nach Einstellung "Ferien-Raumbetriebsart") durch Ferieneingang
13. Ferien oder Sondertag je nach Eintrag im Kalender
14. Komfort, Prekomfort oder Economy über die interne Schaltuhr
6.15 Wirkungen der Betriebsarten (Beispiele)

Anwendungsbeispiel 1 Lüftung mit 2-stufigem Ventilator
- Ventilatorstufe 2, Regelung auf Komfort-Sollwerte
- Ventilatorstufe 1, Regelung auf Prekomfort-Sollwerte
- Stützbetrieb (Economy), Nachtkühlung und Frostschutz aktiv
- Anlage AUS, Frostschutz aktiv

Anwendungsbeispiel 2 Lüftung mit 2-stufigem Ventilator; Stufe 2 nach Raumtemperatur- oder Luftqualitätsregler
- Ventilatorstufe 1, Regelung auf Komfort-Sollwerte; Stufe 2, wenn Raumtemperatur-Sollwerte nicht erreicht werden oder nach Luftqualitätsregler
- Ventilatorstufe 1, Regelung auf Prekomfort-Sollwerte; Stufe 2, wenn Raumtemperatur-Sollwerte nicht erreicht werden oder nach Luftqualitätsregler
- Stützbetrieb (Economy), Nachtkühlung und Frostschutz aktiv
- Anlage AUS, Frostschutz aktiv

Anwendungsbeispiel 3 Lüftung stetig geregelten Ventilatoren
- Ventilator geregelt, Regelung auf Komfort-Sollwerte
- Stützbetrieb (Prekomfort) aktiv
- Stützbetrieb (Economy), Nachtkühlung und Frostschutz aktiv
- Anlage aus, Frostschutz aktiv

Anwendungsbeispiel 4 Kühldecke (Grundtyp U)
- Pumpe EIN, Regelung auf Komfort-Sollwerte
- Pumpe EIN, Regelung auf Prekomfort-Sollwerte
- Anlage AUS, Pumpenkick aktiv
- Anlage AUS, Pumpenkick aktiv

Anwendungsbeispiel 5 Ist die Anforderung vorhanden nach einem kundenspezifischen Stützbetrieb beim Grundtyp U, kann dies folgendermassen umgesetzt werden:
- Eingangsbezeichner mit der gewünschten Einheit konfigurieren, Eingang auf Logik verbinden
- Nutzung der Ein-/Ausschaltfunktion der Logik, Zeitfunktionen der Logik können bei Bedarf eingestellt werden (Einschaltdauer minimal, Ausschaltdauer minimal)
- Verbinden der Logik auf den Funktionsblock "Betriebsart" auf den Eingang:
 - Timerfunktion, oder
 - Schalten auf gewünschte Betriebsart (Raumbetriebsart-Eingang 1), oder
 - Raumbetriebswahlschalter (Raumbetriebsart-Eingang 1 und 2)
- Das Ein wirkt immer auf die ganze Anlage

Hinweis Als Grund bei der Anlagenbetriebsartwahl (siehe Kapitel 6.8.3) wird aber "Benutzeranforderung Raum" angegeben und nicht "Stützbetrieb".
Zweck
Zusätzlich zur Hauptwochenschaltuhr (Kap. 6.9), steht eine einfache Ein/Aus-Schaltuhr zur Verfügung, beispielsweise für den Betrieb von Nebenaggregaten (z. B. Pumpe). Die Schaltuhr 2 hat 6 Einträge pro Tag.

7.1 Aktivierung des Blocks und Einstellungen

Die Schaltuhr 2 wird über die Bedienzeile "Schaltuhr 2" aktiviert.

Bei der Schaltuhr 2 wird über die Bedienzeile "Ferien-Vorrang" gewählt, ob sie durch das Ferienprogramm übersteuert werden kann oder nicht. Bei Übersteuerung ist im Ferienbetrieb der Ausgang der Schaltuhr 2 fix auf "Aus". Mit dem "Ferien-Vorrang" werden auch die Sondertage aktiviert.

Ist die Schaltuhr 2 als "Slave" eingestellt, dann wird die Einstellung "Ferien-Vorrang" nicht berücksichtigt.

Der Ausgang der Schaltuhr 2 kann entweder reglerintern weiterverarbeitet, oder direkt an einem Relaisausgang ausgegeben werden.

Der Ausgang der Schaltuhr 2 kann über den Betriebsschalter am Bediengerät oder via ACS700 übersteuert werden. Er ist jeweils auf der obersten Benutzerebene sichtbar.

Konfiguration und Einstellungen

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltuhr 2</td>
<td>Ja, Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Ferien-Vorrang</td>
<td>Ja, Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>[Schaltuhr 2] Relais</td>
<td>---, N.Q1, N.Q2, ...</td>
<td>---</td>
</tr>
<tr>
<td>[Schaltuhr 2] Betriebsschalter</td>
<td>Ja, Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>
7.2 Kommunikation

Ist der Regler über den Bus mit anderen Reglern verbunden, so kann die Schaltuhr 2 auch als Slave betrieben werde (Masterbetrieb ist nicht möglich).

Folgende Einstellungen sind möglich:
• Autonome Schaltuhr 2
• Schaltuhr 2 empfängt Schaltuhrprogramm vom Bus

Die Einstellungen haben folgende Wirkung:

<table>
<thead>
<tr>
<th>Wirkung</th>
<th>Beschreibung</th>
<th>Grafik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonom</td>
<td>Die Schaltuhr wirkt nur lokal für diesen Regler.</td>
<td>![Autonom Grafik]</td>
</tr>
<tr>
<td>Slave</td>
<td>Die Schaltuhr im Regler ist nicht aktiv. Es wirkt die externe Schaltuhr, die in der geografischen Zone wirkt, die an diesem Regler als Schaltuhr-Empfangszone (Schaltuhr-Slave (Apartment) eingestellt ist. Die externe Schaltuhr muss als Schaltuhr-Master eingestellt sein.</td>
<td>![Slave Grafik]</td>
</tr>
</tbody>
</table>

Für den Slavebetrieb muss die geografische Zone des Reglers, der die Schaltuhr sendet, über die Bedienzeile "Schaltuhr-Slave (Apartment)" eingegeben werden. Für den autonomen Betrieb wird "-----" eingestellt.

Für den Slavebetrieb muss die geografische Zone des Reglers, der die Schaltuhr sendet, über die Bedienzeile "Schaltuhr-Slave (Apartment)" eingegeben werden. Für den autonomen Betrieb wird "-----" eingestellt.

Einstellwerte

Hauptmenü > Inbetriebnahme > Kommunikation > Schaltuhr 2 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltuhr-Slave (Apartment)</td>
<td>1..126</td>
<td>-----</td>
</tr>
<tr>
<td>Umsetzung Prekomfort</td>
<td>Aus, Ein</td>
<td>Ein</td>
</tr>
</tbody>
</table>

Wird die Schaltuhr als Slave betrieben, so nimmt der Ausgang der betreffenden Schaltuhr die folgenden Zustände an:

Betriebsart "Masterschaltuhr"

<table>
<thead>
<tr>
<th>Komfort</th>
<th>Aus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prekomfort</td>
<td>Einstellbar in Bedienzeile "Umsetzung Prekomfort": Ein oder Aus</td>
</tr>
<tr>
<td>Economy</td>
<td>Aus</td>
</tr>
</tbody>
</table>

7.3 Einträge

Für folgende Tage kann ein eigenes Tagesprofil gewählt werden.

Hauptmenü > Schaltuhr 2

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montag bis Sonntag</td>
<td>Ein, Aus</td>
<td>06:00 22:00</td>
</tr>
<tr>
<td>Sondertag</td>
<td>Ein, Aus</td>
<td>06:00 22:00</td>
</tr>
</tbody>
</table>

Für jeden Tag können maximal 6 Einträge im Tagesprogramm eingegeben werden. Für einen Eintrag muss die Zeit und die gewünschte Betriebsart (Ein / Aus) eingegeben werden.
7.4 Zuordnung von Texten

Freier Text

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltuhr 2</td>
<td>max. 20 Zeichen</td>
<td>Schaltuhr 2</td>
</tr>
<tr>
<td>[Schaltuhr 2] Betriebsschalter</td>
<td>max. 20 Zeichen</td>
<td>[Schaltuhr 2] Betriebsschalter</td>
</tr>
</tbody>
</table>

Eine Übersicht aller editierbaren Texte und die Vorgehensweise zum Zurücksetzen von Texten sind in Kapitel 31.4 zu finden.

7.5 Betriebsschalter

Im Hauptmenü kann über den Betriebsschalter die Betriebsart des Ausgangs der Schaltuhr vorgegeben werden. Der aktuelle Zustand wird z. B. für den Betriebsschalter der Schaltuhr 2 wie folgt angezeigt.

Einstellwert

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorgabe</td>
<td>Auto, Aus, Ein</td>
<td>Auto</td>
</tr>
</tbody>
</table>

Hinweis

Wird der Betriebsschalter nachträglich wieder wekonfiguriert, muss vorher unbedingt sichergestellt sein, dass er auf Position "Auto" steht. Andernfalls steht die Schaltuhr nachher permanent auf "Ein" oder "Aus".

Anzeigewerte

| [Schaltuhr 2] Betr'schalter |
| Vorgabe: Auto |
| Zustand: Komfort |

7.6 Fehlerbehandlung

Wird ein Schaltuhrsignal vom Bus erwartet und dieses wird nicht gesandt, erfolgt eine Fehlermeldung [Schaltuhr 2] Ausfall". Der Empfänger arbeitet in diesem Fall mit dem Zustand "Ein" weiter.

Störungsmeldungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5111</td>
<td>[Schaltuhr 2] Ausfall</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>
8 Eingänge

8.1 Universelle Eingänge

An die universellen Eingänge können digitale Signale, passive analoge Signale oder aktive analoge Signale angeschlossen werden.

Die folgende Anzahl universeller Eingänge steht für den einzelnen Gerätetyp zur Verfügung:

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Eingänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMU710B</td>
<td>6 Eingänge</td>
</tr>
<tr>
<td>RMU720B</td>
<td>8 Eingänge</td>
</tr>
<tr>
<td>RMU730B</td>
<td>8 Eingänge</td>
</tr>
</tbody>
</table>

Werden mehr Eingänge benötigt, kann die Anzahl der Eingänge mit Erweiterungsmodulen erhöht werden.

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Eingänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMZ785</td>
<td>8 Eingänge</td>
</tr>
<tr>
<td>RMZ787</td>
<td>4 Eingänge</td>
</tr>
<tr>
<td>RMZ788</td>
<td>4 Eingänge</td>
</tr>
</tbody>
</table>

Es können maximal 4 Erweiterungsmodule aus einem Set von einem RMZ785, zwei RMZ787 und zwei RMZ788 angeschlossen werden.

Die maximale Anzahl Eingänge ist also:

RMU710B + RMZ785 + RMZ787(1) + RMZ787(2) + RMZ788(1)	26 Eingänge
RMU720B + RMZ785 + RMZ787(1) + RMZ787(2) + RMZ788(1)	28 Eingänge
RMU730B + RMZ785 + RMZ787(1) + RMZ787(2) + RMZ788(1)	28 Eingänge

8.1.1 Aktivieren der Funktion

Jedem Eingang kann eine Bezeichnung zugeordnet werden. Mit der Bezeichnung wird die Einheit des Eingangs festgelegt.

Wird ein Eingang nicht für die Anwendung benötigt, kann er für Anzeigezwecke gebraucht werden. Dazu wird ebenfalls die Bezeichnung/Einheit zugeordnet. Dem Eingang kann ein sprechender Name gegeben werden. Auf dem Bediengerät kann dann der angeschlossene Wert angezeigt werden.
<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hinweise</th>
<th>..Fortsetzung: Bezeichnung</th>
<th>Hinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumtemperatur</td>
<td>ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aussentemperatur</td>
<td>Universal 000.0</td>
<td>2)</td>
<td></td>
</tr>
<tr>
<td>Ablufttemperatur</td>
<td>Universal 0000</td>
<td>3)</td>
<td></td>
</tr>
<tr>
<td>Zulufttemperatur</td>
<td>Digital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>Frostschutz</td>
<td>1)</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Frostschutzwächter 1</td>
<td>1)</td>
<td></td>
</tr>
<tr>
<td>g/kg</td>
<td>Frostschutzwächter 2</td>
<td>1)</td>
<td></td>
</tr>
<tr>
<td>kJ/kg</td>
<td>Frostschutzwächter 3</td>
<td>1)</td>
<td></td>
</tr>
<tr>
<td>W/m²</td>
<td>[Regler 1] Fernsollwertgeber</td>
<td>1) 4)</td>
<td></td>
</tr>
<tr>
<td>m/s</td>
<td>[Regler 2] Fernsollwertgeber</td>
<td>1) 5)</td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td>[Regler 3] Fernsollwertgeber</td>
<td>1) 6)</td>
<td></td>
</tr>
<tr>
<td>mbar</td>
<td>Fernsollwertgeber relativ</td>
<td>7)</td>
<td></td>
</tr>
<tr>
<td>Pa</td>
<td>Impuls</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Der Bezeichner hat zusätzliche Funktionalität hinterlegt, siehe 8.3 "Spezielle analoge Eingänge"
2) universeller Eingang mit einer Kommastelle, Auflösung –99.9… +999.9, Verstellschritt 0.1
3) universeller Eingang ohne Kommastelle, Auflösung –999…+9999, Verstellschritt 1
4) Fernsollwert absolut für Regler 1
5) Fernsollwert absolut für Regler 2
6) Fernsollwert absolut für Regler 3
7) Fernsollwert relativ für Regler 1 (Grundtyp A)

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Eingangsbezeichner >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X1</td>
<td>Aktivieren der Funktion, indem dem Eingang der Wert Raumtemperatur, Aussentemperatur, Ablufttemperatur, Zulufttemperatur, °C, %, g/kg, kJ/kg, W/m², m/s, bar, mbar, Pa, ppm, Universal 000.0, Universal 0000, Digital, Frostschutz, Frostschutz 1, Frostschutz 2, Frostschutz 3, [Regler 1] Fernsollwertgeber, [Regler 2] Fernsollwertgeber, [Regler 3] Fernsollwertgeber, Fernsollwertgeber relativ oder Impuls zugewiesen wird</td>
</tr>
<tr>
<td></td>
<td>dito</td>
</tr>
<tr>
<td>RMZ788(2).X4</td>
<td>dito</td>
</tr>
</tbody>
</table>

Hinweise

- Die Bezeichnung °C, %, g/kg, kJ/kg, W/m², m/s, bar, mbar, Pa, ppm, 100 und 1000 sind immer analoge Eingänge
- Die Einheit für den "Fernsollwertgeber relativ" ist K (Kelvin)
- Der "Fernsollwert absolut" nimmt die Einheit der Hauptregelgrössen an
8.1.2 Grund

Die Quelle eines Eingangswerts wird im Wert „Grund“ angezeigt. Folgende Typen werden unterschieden:

- **Klemme**: Verwendung als lokale Klemme
- **LTE-Mode**: Verwendung als LTE Sende- und Empfangsobjekt
- **S-Mode**: Verwendung als S-Mode-Objekt
- **Simulation**: Eingangsklemmen-Simulation

Hinweis

Die Funktionen der LTE Sende- und Empfangsobjekte sind in Kapitel 28.2.6 beschrieben.

8.1.3 Eingangsklemmen-Simulation

Um die Reaktion einer Anlage zu testen, kann jede Eingangsklemme simuliert werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich (abhängig vom Typ)</th>
<th>Werkeinstellung (je nach Typ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X1...</td>
<td>----, −50...+50 °C</td>
<td>----</td>
</tr>
<tr>
<td>A8 (2).X4</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

Die Übersteuerung der Eingänge sollte nur von Fachpersonal in eng begrenztem Zeitraum vorgenommen werden!

Während der Simulation der Klemme wird die Störungsmeldung „Simulation Eingänge aktiv“ ausgegeben.

Störungsmeldungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Simulation Eingänge aktiv</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

Die Störungsmeldung bleibt bestehen, bis die Simulation wieder auf die Einstellung "----" gesetzt wird. So wird sichergestellt, dass auf der Anlage nicht vergessen wird, die Simulation zurückzusetzen.

Hinweis

Der simulierte Eingangsklemmenwert wird nur lokal verwendet und wird nicht über den Bus an andere Regler gesendet.
8.1.4 Fehlerbehandlung

Einige Funktionsblöcke brauchen zwingend definierte Eingänge; z. B. benötigt die Vorbefehl-Rückmeldung der Motoren zwingend einen digitalen Eingang.

Wird die Vorbefehl-Rückmeldung konfiguriert, werden auch nur die Eingänge mit dem Bezeichner "Digital " angezeigt. Deshalb müssen die Bezeichner der Eingänge bei einer Konfiguration immer vorher gesetzt werden!

Wird der Bezeichner der Eingänge geändert, nachdem die Konfiguration der anderen Blöcke abgeschlossen ist, kann es sein, dass einzelne Funktionen der anderen Blöcke inaktiv gesetzt werden, weil diese sonst mit für diesen Block ungültigen Einheiten arbeiten müssten!

8.1.5 Funktionskontrolle/Verdrahtungstest

Während des Verdrahtungstests können die Messwerte aller Eingänge überprüft werden.

Hauptmenü > Inbetriebnahme > Verdrahtungstest > Eingänge >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X1</td>
<td>Anzeige des aktuellen Messwerts</td>
</tr>
<tr>
<td>...</td>
<td>dito</td>
</tr>
<tr>
<td>RMZ787(2).X4</td>
<td>dito</td>
</tr>
</tbody>
</table>
8.2 Analog Eingänge

Die analogen Eingänge können wie im Kapitel 8.1.1 "Aktivieren der Funktion" beschrieben, aktiviert werden.

Bei den analogen Eingängen können Einstellungen vorgenommen werden an:
Typ, Messbereich und Korrektur.

8.2.1 Typ

Ist die Einheit °C, so kann der Typ gewählt werden. Ist die Einheit nicht °C, so ist der Typ immer 0...10 V.

Folgende Typen stehen zur Verfügung:
- LG-Ni1000
- 2xLG-Ni1000
- T1
- Pt1000
- 0...10 V

8.2.2 Messbereich

Passive Temperatursignale von Messelementen LG-Ni 1000 haben einen Messbereich von −50...+250 °C.

Passive Temperatursignale von Messelementen 2x LG-Ni 1000 oder T1 haben einen Messbereich von −50...+150 °C.

Passive Temperatursignale von Messelementen Pt1000 haben einen Messbereich von −50...+400 °C.

Bei den aktiven Signalen kann der Messbereich eingegeben werden. Es muss ein unterer und ein oberer Messwert eingegeben werden.

8.2.3 Messwertkorrektur

Einem passiven Temperaturfühler kann eine Messwertkorrektur von −3,0 bis +3,0 K eingegeben werden, um den Widerstand der Leitung zu kompensieren. So kann eine Kalibrierung mit einem Referenzmessgerät vor Ort vorgenommen werden.
8.2.4 Fühler-Anschlussbeispiele

Beispiel 1
Temperaturmessung mit einem passiven Temperaturfühler mit LG-Ni 1000-Meselement.

Konfiguration des Eingangs
Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Eingangsbezeichner >
Bedienzeile	**Einstellung**
N.X1 | °C

Einstellwerte
Hauptmenü > Inbetriebnahme > Einstellungen > oder
Hauptmenü > Einstellungen > Eingänge > ...X...
Bedienzeile	**Einstellung**
Typ | Ni1000

Anschlussschema

Beispiel 2
Durchschnittstemperaturmessung mit 2 passiven Temperaturfühlern mit LG-Ni 1000-Meselementen.

Konfiguration des Eingangs
Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Eingangsbezeichner >
Bedienzeile	**Einstellung**
N.X1 | °C

Einstellwerte
Hauptmenü > Inbetriebnahme > Einstellungen > oder
Hauptmenü > Einstellungen > Eingänge > ...X...
Bedienzeile	**Einstellung**
Typ | 2xNi1000

Anschlussschema

Beispiel 3
Durchschnittstemperaturmessung mit 4 passiven Temperaturfühlern mit LG-Ni 1000-Meselement.
8.2.5 Fehlerbehandlung

Wenn das Inbetriebnahmemenü verlassen wird, wird überprüft, welche Fühler angeschlossen sind. Fehlt später einer der zu diesem Zeitpunkt angeschlossenen Fühler oder ist ein Kurzschluss auf der Leitung, wird eine Störungsmeldung "[...X...] Fühler-fehler" abgesetzt.

Ein Leitungsbruch wird beim Messwert im Display folgendermassen dargestellt: ----
Ein Kurzschluss wird beim Messwert im Display folgendermassen dargestellt: oooo

Störungsmeldungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>[N.X1] Fühlerfehler</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

8.2.6 Fühlermehrfachverwendung

Problem und Lösung

Konfiguration

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Y N.X1,…</td>
<td>Aktivieren der Funktion, indem der Ausgangsklemme eine Eingangsklemme zugewiesen wird</td>
</tr>
</tbody>
</table>

Einstellwerte

Die Wandlung eines Signals LG-Ni1000 oder Pt1000 in ein Signal DC 0…10 V wird über die Einstellung der Parameter "Wert unten" und "Wert oben" vorgenommen.

Hinweis

Die Fühlermehrfachverwendung steht bei der Eingangsklemmen-Simulation nicht zur Verfügung.
8.3 Spezielle analoge Eingänge

Folgende analogen Eingänge haben weitergehende spezielle Funktionen:

- Zulufttemperatur
- Raumtemperatur
- Ablufttemperatur
- Ausentemperatur

Die zusätzliche Funktionalität der Bezeichner "Frostschutz", "Frostschutzwächter 1, 2 und 3", "[Regler 1, 2 und 3] Fernsollgeber" werden in den nachfolgenden Kapitel beschrieben.

Die folgende Tabelle beschreibt die Wirkung, wenn ein oder mehrere Eingangsbezeichner gleichzeitig angeschlossen sind.

<table>
<thead>
<tr>
<th>Eingangsbezeichner</th>
<th>Wirkung</th>
</tr>
</thead>
</table>
| "Zulufttemperatur" (ohne Raumtemperatur über Bus) | Zuluftregelung
Kein Stützbetrieb, kein Nachtlüften |
| "Raumtemperatur" oder Raumtemperatur über Bus | Raumtemperaturregelung
Stützbetrieb und Nachtlüften nach "RT" |
| "Ablufttemperatur" (ohne Raumtemperatur über Bus) | Ablufttemperaturregelung
kein Stützbetrieb, kein Nachtlüften |
| "Zulufttemperatur" + "Raumtemperatur" oder Raumtemperatur über Bus | Kaskadenregelung nach Raumtemperatur oder Zuluftregelung
(je nach Kask./Konst.-Umschalteingang oder Zusammenspiel Heizung/Lüftung)
Stützbetrieb, Nachtlüften nach "RT" |
| "Zulufttemperatur" + "Ablufttemperatur" (ohne Raumtemperatur über Bus) | Kaskadenregelung nach Ablufttemperatur oder Zuluftregelung
(je nach Kask./Konst.-Umschalteingang oder Zusammenspiel Heizung/Lüftung)
Kein Stützbetrieb, kein Nachtlüften |
| "Zulufttemperatur" + "Raumtemperatur" oder Raumtemperatur über Bus + "Ablufttemperatur" | Kaskadenregelung nach Ablufttemperatur oder Zuluftregelung
(je nach Kask./Konst.-Umschalteingang oder Zusammenspiel Heizung/Lüftung)
Stützbetrieb, Nachtlüften nach "RT" |
| "Raumtemperatur" oder Raumtemperatur über Bus + "Ablufttemperatur" | Ablufttemperaturregelung
Stützbetrieb und Nachtlüften nach "RT" |

8.4 Aussentemperatur

8.4.1 Anschlussmöglichkeiten

Die Aussentemperatur kann von verschiedenen Quellen zur Verfügung gestellt werden:
- Aussentemperatur lokal an Klemme angeschlossen
- Aussentemperatur vom Bus

Folgende Varianten sind möglich:

<table>
<thead>
<tr>
<th>Variante</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aussentemperatur an Klemme.</td>
<td>Der Regler arbeitet mit der eigenen Aussentemperatur, keine Wirkung auf Bus</td>
</tr>
<tr>
<td>Kommunikation Aussentemperatur</td>
<td></td>
</tr>
<tr>
<td>nicht aktiv</td>
<td></td>
</tr>
<tr>
<td>Aussentemperatur an Klemme.</td>
<td>Der Regler arbeitet mit der eigenen Aussentemperatur. Die Aussentemperatur wird am Bus auch anderen Reglern zur Verfügung gestellt</td>
</tr>
<tr>
<td>Kommunikation Aussentemperatur</td>
<td></td>
</tr>
<tr>
<td>aktiv</td>
<td></td>
</tr>
<tr>
<td>Keine Aussentemperatur an Klemme.</td>
<td>Der Regler arbeitet mit der Aussentemperatur, welche ihm ein anderer Regler am Bus zur Verfügung stellt</td>
</tr>
<tr>
<td>Kommunikation Aussentemperatur</td>
<td></td>
</tr>
<tr>
<td>aktiv</td>
<td></td>
</tr>
<tr>
<td>Keine Aussentemperatur an Klemme.</td>
<td>Dem Regler steht keine Aussentemperatur zur Verfügung</td>
</tr>
<tr>
<td>Kommunikation Aussentemperatur</td>
<td></td>
</tr>
<tr>
<td>nicht aktiv</td>
<td></td>
</tr>
</tbody>
</table>

8.4.2 Aussentemperatur an Klemme

Die Einstellungen und das Anschlussschema für die Aussentemperatur an der Klemme sind unter Kapitel 8.2 "Analoge Eingänge" beschrieben.

Konfiguration

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>\text{Einstellbare Werte / Bemerkung}</th>
</tr>
</thead>
<tbody>
<tr>
<td>...X...</td>
<td>Aktivieren der Funktion, indem dem Eingang der Wert "Aussentemperatur" zugewiesen wird</td>
</tr>
</tbody>
</table>

8.4.3 Aussentemperatur am Bus

Die Aussentemperatur kann nur über den Bus versandt werden, wenn die Kommunikation aktiviert und eine Aussentemperaturzone eingestellt worden sind (Aussentemperaturzone = "----" bedeutet, dass die Aussentemperatur am Bus inaktiv ist).

Damit verschiedene Aussentemperaturen über den Bus verteilt werden können (z. B. Aussentemperatur an der Nordseite für die Klimaanlagen, Aussentemperatur an der
Ostseite für die Heizgruppe Ost, ...) müssen diese jeweils einer Aussentemperaturzone zugeordnet werden.

Die dazu nötigen Einstellungen sind unter Kapitel 28 "Kommunikation" beschrieben.

8.4.4 Aussentemperatur-Simulation

Um die Aussentemperatur zu simulieren und die Reaktion der Anlage zu testen, kann der Messwert der Aussentemperatur übersteuert werden.

Die Übersteuerung der Eingänge sollte nur vom Fachpersonal in eng begrenztem Zeitraum vorgenommen werden!

Während der Simulation der Aussentemperatur wird eine Störungsmeldung "Aussenfühler-Simulation aktiv" ausgelöst.

Die simulierte Aussentemperatur wird nur lokal verwendet; sie wird nicht über den Bus an andere Regler versandt.

8.4.5 Fehlerbehandlung

Wenn das Inbetriebnahmemenü verlassen wird, wird überprüft, ob die Aussentemperatur angeschlossen ist. Ist die Aussentemperatur zu diesem Zeitpunkt angeschlossen und fehlt sie später, wird eine Störungsmeldung "[...X...] Fühlerfehler" abgesetzt.

Pro System darf nur eine Aussentemperatur in der gleichen Zone versandt werden (nur ein Aussentemperatur-Master).

Senden mehrere Regler ihre Aussentemperatur in der gleichen Zone, erfolgt eine Fehlermeldung ">1 Aussentemperaturfühler". Der Fehler wird von den Reglern gesandt, welche Aussentemperaturen in die gleiche Zone senden und empfangen. Erwartet der Regler eine Aussentemperatur vom Bus und diese wird nicht gesandt, erfolgt eine Fehlermeldung "Aussentemp.-Fühlerfehler".

Störungsmeldungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>[N.X1] Fühlerfehler</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
<tr>
<td>11</td>
<td>>1 Aussentemperaturfühler</td>
<td>Dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>10</td>
<td>Aussentemp.-Fühlerfehler</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

Sind andere Aussentemperaturen am Bus verfügbar, wird irgendeine andere Aussentemperatur nach dem Zufallsprinzip vom Bus verwendet.
8.5 Raumtemperatur

8.5.1 Anschlussmöglichkeiten

Die Raumtemperatur kann nur bei Grundtyp A aktiviert werden. Sie kann von verschiedenen Quellen zur Verfügung gestellt werden:

- Raumtemperatur lokal an Klemme angeschlossen
- Raumtemperatur vom Bus

8.5.2 Mittelwertbildung, Anschlussvarianten

Ist die Kommunikation aktiviert, kann die Raumtemperatur über den Bus versandt werden. Die Raumtemperatur wird in der geografischen Zone versandt und steht allen Geräten, welche die gleiche geografische Zone bedienen, zur Verfügung. Die dazu nötigen Einstellungen sind unter Kapitel 28.2.1 "Untermenü "Grundeinstellungen"" beschrieben.

Folgende Varianten sind möglich:

<table>
<thead>
<tr>
<th>Variante</th>
<th>Wirkung</th>
<th>Grafik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ein analoger Raumtemperaturfühler am Regler</td>
<td>Der Regler arbeitet mit der eigenen Raumtemperatur. Ist die Kommunikation aktiviert, wird der Raumtemperaturwert in der entsprechenden geografischen Zone auf den Bus gelegt</td>
<td></td>
</tr>
<tr>
<td>Zwei analoge Raumtemperaturfühler an gleiche Klemme</td>
<td>Der Regler arbeitet mit dem Mittelwert dieser beiden Fühler. Ist die Kommunikation aktiviert, wird der Mittelwert in der entsprechenden geografischen Zone auf den Bus gelegt</td>
<td></td>
</tr>
<tr>
<td>Ein KNX-Raumgerät</td>
<td>Der Regler arbeitet mit der Raumtemperatur des Raumgeräts. Die Kommunikation muss aktiviert sein, der Regler und das Raumgerät müssen die gleiche geografische Zone eingestellt haben</td>
<td></td>
</tr>
<tr>
<td>Ein analoger Raumtemperaturfühler am Regler und ein KNX-Raumgerät</td>
<td>Der Regler arbeitet mit dem Mittelwert dieser beiden Messwerte. Die Kommunikation muss aktiviert sein, der Regler und das Raumgerät müssen die gleiche geografische Zone eingestellt haben</td>
<td></td>
</tr>
<tr>
<td>Zwei KNX-Raumgeräte</td>
<td>Der Regler arbeitet mit dem Mittelwert der Raumtemperaturen zweier Raumgeräte. Die Kommunikation muss aktiviert sein, der Regler und das Raumgeräte müssen die gleiche geografische Zone eingestellt haben</td>
<td></td>
</tr>
</tbody>
</table>
8.5.3 Raumtemperatur an Klemme

Es kann max. 1 Eingang als Raumtemperatur konfiguriert werden. Weisen mehrere Eingänge die Bezeichnung "Raumtemperatur" auf, so wird nur der erste Eingang verwendet, alle anderen werden ignoriert!

Die Einstellungen und das Anschlussschema für die Raumtemperatur an der Klemme sind unter Kapitel 8.2 "Analoge Eingänge" beschrieben.

Konfiguration

<table>
<thead>
<tr>
<th>Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Eingangsbezeichner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>...X...</td>
</tr>
</tbody>
</table>

Einstellwerte

<table>
<thead>
<tr>
<th>Hauptmenü > Inbetriebnahme > Einstellungen > ... oder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Einstellungen > Eingänge > ...X...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
<td>Ni1000, 2xNi1000, T1, Pt1000, 0...10 V</td>
<td>Ni1000</td>
</tr>
<tr>
<td>Wert unten</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>Wert oben</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>Korrektur</td>
<td>–3.0...+3.0 K</td>
<td>0 K</td>
</tr>
</tbody>
</table>

8.5.4 Installationshinweise

Die Raumtemperatur wird für die folgenden Funktionen verwendet:

- **Quelllüftung:**
 Bei einer Quelllüftung nutzt man den Temperaturgradient der Raumluft aus. Das heisst aber, dass die Ablufttemperatur um einige Grad wärmer sein kann als die Raumlufttemperatur, deshalb muss hier ein Raumtemperaturfühler montiert werden.

- **Funktion Nachtkühlung:**
 Bei ausgeschalteter Anlage misst der Ablufttemperaturfühler nicht mehr die Raumluft, sondern nur noch die stehende Luft im Lüftungskanal. Deshalb braucht diese Funktion immer eine Raumlufttemperatur.

- **Funktion Stützbetrieb:**
 Bei ausgeschalteter Anlage misst der Ablufttemperaturfühler nicht mehr die Raumluft, sondern nur noch die stehende Luft im Lüftungskanal. Deshalb braucht diese Funktion immer eine Raumlufttemperatur.

- **Wenn der Abluftkanal sehr lange ist, kann sich die Temperatur im Kanal ändern, bis diese den Kanalfühler erreicht. Dies gilt insbesondere, weil in den meisten Fällen die Abluftkanäle nicht isoliert sind. Die Ablufttemperatur kann in diesen Fällen stark von der Raumlufttemperatur abweichen.**

- **Wenn ein Heizungsregler RMH7.. und ein Lüftungsregler RMU7..B gemeinsam einen Raum regeln, so darf der Raumeinfluss beim Heizungsregler nur aktiviert sein, wenn ein Raumlufttemperaturfühler montiert ist, da der Ablufttemperaturfühler bei ausgeschalteter Lüftungsanlage nur noch die stehende Luft im Lüftungskanal misst.**
8.5.5 Fehlerbehandlung

Wenn das Inbetriebnahmemenü verlassen wird, wird überprüft, ob die Raumtemperatur angeschlossen ist. Ist die Raumtemperatur zu diesem Zeitpunkt angeschlossen und fehlt sie später, wird eine Störungsmeldung generiert.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>[N.X1] Fühlerfehler</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
<tr>
<td>60</td>
<td>Raumtemp.-Fühlerfehler Anl. 1</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

Pro System dürfen maximal zwei Raumtemperaturen in der gleichen geographischen Zone versandt werden. Senden mehr als zwei Regler ihre Raumtemperatur in der gleichen Zone, erfolgt eine Fehlermeldung ">2 Raumfühler in Anlage 1". Der Fehler wird von dem Regler gesandt, der mehrere Raumtemperatursignale in der gleichen Zone empfängt.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>>2 Raumfühler in Anlage 1</td>
<td>Dringende Meldung; muss quittiert werden</td>
</tr>
</tbody>
</table>
8.6 Digitale Eingänge

An die digitalen Eingänge können Signale für Steuerfunktionen angeschlossen werden. Die digitalen Eingänge können wie unter Kapitel 8.1.1 "Aktivieren der Funktion" beschrieben, aktiviert werden.

8.6.1 Ruhestellung

Jedem digitalen Eingang kann vorgegeben werden, welches die Ruhestellung ist.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Bereich</td>
</tr>
<tr>
<td>Werkinstellung</td>
</tr>
<tr>
<td>Ruhestellung</td>
</tr>
<tr>
<td>Offen, Geschlossen</td>
</tr>
<tr>
<td>Offen</td>
</tr>
</tbody>
</table>

8.6.2 Texte für die logischen Zustände 0 und 1

Jedem digitalen Eingang kann für die logischen Zustände 0 und 1 ein freier Text zugeordnet werden. (z. B. Ein – Aus, Voll – Leer, etc.). Wird ein Text vergeben, so wird bei dem betreffenden Eingang dieser Text angezeigt. Wird der Text gelöscht, erscheint wieder der Text gemäß Werkinstellung.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Bereich</td>
</tr>
<tr>
<td>Werkinstellung</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
</tr>
<tr>
<td>max. 20 Zeichen</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
</tr>
<tr>
<td>max. 20 Zeichen</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

8.6.3 Anschlussbeispiel

An den digitalen Eingängen können potentialfreie Kontakte angeschlossen werden.

<table>
<thead>
<tr>
<th>Konfiguration des Eingangs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Einstellung</td>
</tr>
<tr>
<td>N.X2</td>
</tr>
<tr>
<td>Digital</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Einstellung</td>
</tr>
<tr>
<td>Ruhestellung</td>
</tr>
<tr>
<td>Offen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anschlussschema</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
</tr>
<tr>
<td>AC 24 V</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>X...</td>
</tr>
<tr>
<td>F...</td>
</tr>
<tr>
<td>G0</td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

Wächter mit potentialfreiem Schaltkontakt
8.6.4 Fehlerbehandlung

Digitale Signale können nicht überwacht werden.

Sind wichtige Schutzfunktionen wie z. B. eine Brandabschaltung an diesem Eingang angeschlossen, so empfiehlt es sich, die Verdrahtung so zu wählen, dass auch eine Brandabschaltung bei fehlendem Signal (Leitungsbruch) ausgelöst wird (Einstellwert "Ruhestellung": Geschlossen).

8.7 Fernsollwertgeber absolut

Der absolute Fernsollwert wirkt auf die Komfort- und Prekomfort-Sollwerte. Als Sollwertgeber eignen sich das Raumbediengerät QAA25 (5...35 °C), der passive Sollwertgeber BSG21.1 und der aktive Sollwertgeber BSG61.

8.7.1 Aktivieren der Funktion

Die Funktion wird aktiviert, indem der Bezeichner eines Einganges als Fernsollwert gesetzt wird. Gleichzeitig muss angegeben werden, auf welchen Regler (1...3) der Fernsollwert wirken soll.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Eingangsbezeichner

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>...X...</td>
<td>Aktivieren der Funktion, indem dem Eingang der Wert "[Regler 1] Fernsollwertgeber" (Fern-w1), "[Regler 2] Fernsollwertgeber " (Fern-w2) oder "[Regler 3] Fernsollwertgeber" (Fern-w3) zugewiesen wird</td>
</tr>
</tbody>
</table>

8.7.2 Typ und Messbereich

Es kann gewählt werden, ob es sich beim Fernsollwert um ein aktives (DC 0...10 V) oder um ein passives Signal (0...1000 Ω) handelt. Zusätzlich kann der Bereich des Eingangssignals eingestellt werden:

Wert oben: Wert bei DC 10 V oder bei 1000 Ω
Wert unten: Wert bei DC 0 V oder bei 0 Ω

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
Hauptmenü > Einstellungen > Eingänge > ...

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
<td>0...10 V, Ohm</td>
<td>Ohm</td>
</tr>
<tr>
<td>Wert unten</td>
<td>abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>Wert oben</td>
<td>abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
</tbody>
</table>
8.7.3 Sollwerte

Komfort: Der Fernsollwert wirkt immer auf den unteren Sollwert (Sollwert Heizen). Die Totzone zwischen Seq1+2+3 und Seq4+5 bleibt gleich wie die Totzone bei den fix vorgegebenen Sollwerten.

Der aktuelle untere Komfort-Sollwert ist also
\[\text{Fernsollwert} \]
Der aktuelle obere Komfort-Sollwert ist also
\[\text{Fernsollwert} + (\text{"Komfort-Sollwert oben"} - \text{"Komfort-Sollwert unten"}) \]

Prekomfort: Die Prekomfort-Sollwerte werden ebenfalls mitgeschoben:
Der aktuelle untere Prekomfort-Sollwert ist also
\[\text{Fernsollwert} + (\text{"Prekomfort-Sollwert unten"} - \text{"Komfort-Sollwert unten"}) \]
Der aktuelle obere Prekomfort-Sollwert ist also
\[\text{Fernsollwert} + (\text{"Prekomfort-Sollwert oben"} - \text{"Komfort-Sollwert unten"}) \]

Economy: Ist der Stützbetrieb zusätzlich aktiv, werden die Economy-Sollwerte nur geschoben, wenn die Prekomfort-Sollwerte sonst ausserhalb der Economy-Sollwerte liegen würden.

8.7.4 Anschlussschema

Der Sollwertgeber muss nach folgendem Schema angeschlossen werden:

![Anschlussschema](image)

8.7.5 Fehlerbehandlung

Fehler im Betrieb: Wenn das Inbetriebnahmemenü verlassen wird, wird überprüft, ob der Sollwertgeber angeschlossen ist.

Ist der Sollwertgeber zu diesem Zeitpunkt angeschlossen und fehlt er später, wird eine Störungsmeldung "[...X...] Fühlerfehler" abgesetzt.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>[N.X1] Fühlerfehler, Nicht dringende Meldung; muss nicht quittiert werden</td>
<td></td>
</tr>
</tbody>
</table>

Ist kein Signal vom Sollwertgeber verfügbar, so arbeitet der Regler mit den intern eingestellten Sollwerten weiter.

Konfigurationsfehler: Wenn mehr als ein Eingang als Fernsollwertgeber für den gleichen Regler aktiviert worden sind, wird nur der erste Eingang berücksichtigt.
8.8 Fernsollwertgeber relativ

Der relative Fernsollwert wirkt auf die Komfort- und Prekomfort-Sollwerte.
Als Sollwertgeber eignen sich das Raumbediengerät QAA27 (−3...+3 K) und der passive Sollwertgeber BSG21.5 (−3...+3 K).
Es relativer Sollwertgeber steht zur Verfügung. Er ist dem Universalregler 1 mit der Hauptregelgrösse Temperatur fix zugeordnet.

8.8.1 Aktivieren der Funktion

Die Funktion wird aktiviert, indem der Bezeichner eines Einganges als Relativ-Sollwertgeber gesetzt wird.
Der relative Fernsollwertgeber kann nur für die Raumtemperatur-Regelung mit Regler Grundtyp A aktiviert werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Eingangsbezeichner

Bedienzeile	Einstellbare Werte / Bemerkung
...X... | Aktivieren der Funktion, indem dem Eingang der Wert "Fernsollwertgeber relativ" (Fern rel) zugewiesen wird

8.8.2 Messbereich

Der Bereich des Sollwertgebers muss 1000...1175 Ω = −3...+3 K betragen.

8.8.3 Sollwerte

Komfort
Der relative Fernsollwertgeber wirkt auf den Komfort-Heiz-Sollwert und den Komfort-Kühl-Sollwert. Die Totzone zwischen Seq1+2+3 und Seq4+5 bleibt also gleich wie die Totzone bei den fix vorgegebenen Sollwerten.

Prekomfort
Der relative Fernsollwertgeber wirkt auch auf den Prekomfort-Heiz-Sollwert und den Prekomfort-Kühl-Sollwert. Die Differenz zu den Komfort-Sollwerten bleibt also gleich wie bei den fix vorgegebenen Sollwerten.

Economy
Die Economy-Sollwerte werden nur geschoben, wenn die Prekomfort-Sollwerte sonst ausserhalb der Economy-Sollwerte liegen würden.

Funktionsdiagramm
8.8.4 Anschlussschema

Der Sollwertgeber muss nach folgendem Schema angeschlossen werden:

![Diagram of the connection schema]

AC 24 V

G

B M B1 B M B5 (B) M R5

G X... M X... M X... M

G0

G0

R5 Passiver Sollwertschieber BSG21.5

8.8.5 Fehlerbehandlung

Fehler im Betrieb
Wenn das Inbetriebnahmemenü verlassen wird, wird überprüft, ob der Sollwertgeber angeschlossen ist.

Ist der Sollwertgeber zu diesem Zeitpunkt angeschlossen und fehlt er später, wird eine Störungsmeldung "[...X...] Fühlerfehler" abgesetzt.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>[N.X1] Fühlerfehler</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

Ist kein Signal vom Sollwertgeber verfügbar, so arbeitet der Regler ohne relative Sollwertschiebung weiter.

Konfigurationsfehler
Wenn mehr als ein Eingang als relater Fernsollwertgeber aktiviert wurden, so wird nur der erste Eingang berücksichtigt.
8.9 Impuls

An einen Eingang mit diesem Bezeichner kann ein Impulszähler aufgeschaltet werden. Es können Impulse mit folgender Spezifikation empfangen werden:

- Mechanischer Geber (Reedkontakt) ohne Namurbeschaltung mit einer maximalen Impulsfrequenz von 25 Hz und einer minimalen Impulsdauer von 20 ms
- Elektronischer Geber mit einer maximalen Impulsfrequenz von 100 Hz und einer minimalen Impulsdauer von 5 ms

8.9.1 Aktivieren der Funktion

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Eingangsbezeichner >

Bedienzeile	Einstellbare Werte / Bemerkung
...X... | Impuls

Elektronische Impulsgeber (z. B. Open Collector-Ausgänge) generieren kürzere, weniger prellende Impulse als mechanische Impulsgeber (z. B. Relais, Reedkontakte).

Einstellwert

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder

Hauptmenü > Einstellungen > Eingänge > ...

Bedienzeile	Bereich	Werkeinstellung
Typ | Mechanisch oder Elektronisch | Mechanisch

8.9.2 Anschlussschema

8.10 Zuordnung von Texten

Die Texte können für jeden Eingang über die Bedienung angepasst werden.

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder

Hauptmenü > Einstellungen > Eingänge > ...

Bedienzeile	Bereich	Werkeinstellung
N.Xx | max. 20 Zeichen | N.Xx

Eine Übersicht aller editierbaren Texte und die Vorgehensweise zum Zurücksetzen von Texten sind in Kapitel 31.4 zu finden.
9 Datenerfassung

9.1 Trend

9.1.1 Anschlüsse und Anwendung

Zweck

Der Funktionsblock "Trend" dient dem zeitlichen Aufzeichnen von Messgrössen. Er stellt dazu vier unabhängige Trendkanäle zur Verfügung.

Ein Trendkanal kann eine Messgröße aufzeichnen.

Pro Trendansicht sind zwei Trendkanäle darstellbar: Primärkanal plus Zusatzkanal als Referenz.

Es lassen sich sowohl Signale von den lokalen Eingängen des Reglers aufzeichnen als auch Raumtemperaturen über den Bus und die Aussentemperatur über den Bus.

9.1.2 Ansichten

Beispiel

Das folgende Bild zeigt eine 24-Stunden-Ansicht am Bediengerät, mit primärer Trendkurve und Referenzkurve eines Zusatzkanals:

Inhalte

- In den aktuellen Tagesansichten (8-Minuten-, 8-Stunden-, 24-Stunden) wird oben das Datum sowie der momentane Wert der primären Trendkurve angezeigt.
- Die primäre Trendkurve wird als durchgezogene Linie dargestellt, die Referenzkurve als punktierte Linie.
- Die Beschriftung der Y-Achse bezieht sich auf die Einstellungen des primären Kanals. Wenn die Y-Achsen der beiden Kanäle nicht übereinstimmen, dann wird unten neben der Achse das Warnsymbol angezeigt.

Wechsel zwischen den Ansichten

Mit dem Drehdruckknopf am Bediengerät kann zwischen den 4 verschiedenen Ansichten navigiert werden:

- 8-Minuten-Ansicht: Abtastung alle 5 Sekunden, letzte 8 Minuten
- 8-Stunden-Ansicht: Abtastung alle 5 Minuten, letzte 8 Stunden
- 24-Stunden-Ansicht: Abtastung alle 15 Minuten, aktueller Tag
- Rollend die letzten 6 Tage: Abtastung alle 15 Minuten, letzte 6 Tage

Bemerkung: Die letzten 6 Tage werden in der 24-Stunden-Ansicht dargestellt.
9.1.3 Einstellungen für die Trendfunktion

Einstellungen

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trendkanal 1…</td>
<td>Name des Kanals</td>
</tr>
<tr>
<td>Trendkanal 4</td>
<td>(editierbarer Text mit max. 20 Zeichen)</td>
</tr>
<tr>
<td>Trendsignal</td>
<td>Zuweisung des Trendsignals:</td>
</tr>
<tr>
<td></td>
<td>---, Raumtemperatur über Bus, Aussentemperatur über Bus, N.X1, … A7(2).X4</td>
</tr>
<tr>
<td>Geografische Zone (Apartm.)</td>
<td>1…126</td>
</tr>
<tr>
<td></td>
<td>Nur relevant, wenn "Raumtemperatur über Bus" eingestellt</td>
</tr>
<tr>
<td>Geografische Zone (Raum)</td>
<td>1…63</td>
</tr>
<tr>
<td></td>
<td>Nur relevant, wenn "Raumtemperatur über Bus" eingestellt</td>
</tr>
<tr>
<td>Aussentemperaturzone</td>
<td>1…31</td>
</tr>
<tr>
<td></td>
<td>Nur relevant, bei "Aussentemperatur über Bus" eingestellt</td>
</tr>
<tr>
<td>Y-Achse min</td>
<td>abhängig vom gewählten Typ</td>
</tr>
<tr>
<td>Y-Achse max</td>
<td>abhängig vom gewählten Typ</td>
</tr>
<tr>
<td>Auswahl Zusatzkanal</td>
<td>Trendkanal 1 … Trendkanal 2</td>
</tr>
</tbody>
</table>

Erklärungen zu den Einstellungen

Ein Trendkanal wird aktiviert, indem ihm ein "Trendsignal" zugeordnet wird. Jedem Trendkanal kann unter der Bedienzeile "Trendkanal x" ein anlagenspezifischer Text von max. 20 Zeichen zugeordnet werden. Über die "Geografische Zone" lässt sich die Bus-Adresse des Raumes einstellen für dessen Raumtemperatur der Trend aufgezeichnet werden soll.

Für die Erfassung der Aussentemperatur vom Bus muss die entsprechende "Aussentemperaturzone" eingestellt werden.

Die Y-Achsen lassen sich pro Trendkanal skalieren. Die Datenpunkte "Y-Achse min" und "Y-Achse max" beziehen sich auf die Darstellung der Werte und sind entsprechend dem erwarteten Signalbereich einzustellen. Wenn die aktuellen Werte ausserhalb des eingestellten Bereichs liegen, dann erfolgt keine Trenddarstellung!

Über die Bedienzeile "Auswahl Zusatzkanal" kann ein zweiter Trendkanal eingeblendet werden. Dieser Kanal wird als punktierte Linie dargestellt.

Hinweise zum Zusatzkanal

Beim Zusatzkanal wird nur jeder zweite Messwert dargestellt, daher soll die zu messende Grösse immer auf den Hauptkanal genommen werden.

Die Trendkanäle können unter folgendem Menü abgerufen werden:

- Hauptmenü > Datenerfassung > Trendkanal 1...4

Die Trendkanäle werden mit ihrem zugeordneten Text dargestellt. Wenn ein Trendkanal angewählt wird, dann springt die Anzeige direkt in die 24-Stunden-Ansicht. Mit dem Drehdruckknopf kann man anschließend zwischen den verschiedenen Ansichten wechseln.

9.1.4 Fehlerbehandlung

Trendsignal nicht verfügbar

Wenn ein Trendsignal an den lokalen Eingängen nicht verfügbar ist, z. B. wegen dem Ausfall eines Fühlers, dann erfolgt ab diesem Zeitpunkt keine Trendaufzeichnung mehr. In diesem Fall sind die Störungsmeldungen zu beachten unter:

- Hauptmenü > Störungen > Störungen aktuell

Wenn die Werte über den Bus nicht verfügbar sind, dann findet keine Trendaufzeichnung statt.

Spannungsausfall oder Neustart

9.2 Zähler

Zweck

Mit Hilfe der Zähler können Verbrauchswerte erfasst werden. Es können Impulse von Gas-, Warmwasser-, Kaltwasser-, Elektrizitätszählern verarbeitet werden. Die Impulswerte repräsentieren:
• Energie in kJ, MJ, GJ, Wh, kWh oder MWh
• Volumen in m³, l oder ml
• Grössen ohne Einheit (0…3 Kommastellen)
• Heizkosteneinheit
• BTU

Die Impulse werden gemäss den Einstellwerten in Verbrauchswerte umgerechnet, addiert und die kumulierten Werte als 15 Monatswerte um Mitternacht beim Monatsübergang gespeichert.
Die Zähler dienen der Anlagenoptimierung.

Hinweis

Die Impulszählern im Regler sind wegen Ungenauigkeiten nicht für Abrechnungszwecke geeignet. Einzig die Ablesung an den Zählern direkt (Wärmezähler, Elektrozähler etc.) ergibt die gültigen Werte. Zähler mit Namur- oder S0-Beschaltung werden nicht unterstützt.
Es stehen 2 unabhängige Zähler zur Verfügung.

9.2.1 Aktivieren der Zähler

Es können nur Eingänge mit dem Eingangsbezeichner "Impuls" zugeordnet werden (zur Vorgehensweise siehe Kapitel 8 "Eingänge"). Jeder Zähler wird durch die Zuordnung eines Eingangs aktiviert.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Datenerfassung > Zähler 1...2 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingang n</td>
<td>---, N.X1, N.X2, ...</td>
<td>---</td>
</tr>
</tbody>
</table>

9.2.2 Anzeigeformat

In der Bedienzeile "Angezeigte Einheit" kann die Einheit für die Darstellung gewählt werden.
Der Datenpunkt "Angezeigtes Format" definiert die Anzahl der Nachkommastellen.

Anzeigeformat

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Datenerfassung > Zähler 1...2 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angezeigte Einheit</td>
<td>Wh, kWh, MWh, kJ, MJ, GJ, ml, l, m³, Heizkosteneinheit, Ohne Einheit, BTU</td>
<td>kWh</td>
</tr>
<tr>
<td>Angezeigtes Format</td>
<td>0, 0.0, 0.00, 0.000</td>
<td>0</td>
</tr>
</tbody>
</table>
9.2.3 Impulswertigkeit

Beispiel 1

<table>
<thead>
<tr>
<th>Impulswertigkeit</th>
<th>20 Liter / Impuls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ihre Einstellung</td>
<td>Impulswertigkeit Zähler = 20</td>
</tr>
<tr>
<td></td>
<td>Impulswertigkeit Nenner = 1</td>
</tr>
<tr>
<td></td>
<td>Impuls Einheit = Liter</td>
</tr>
</tbody>
</table>

Beispiel 2

<table>
<thead>
<tr>
<th>Impulswertigkeit</th>
<th>3.33.. Wh / Impuls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ihre Einstellung</td>
<td>Impulswertigkeit Zähler = 10</td>
</tr>
<tr>
<td></td>
<td>Impulswertigkeit Nenner = 3</td>
</tr>
<tr>
<td></td>
<td>Impuls Einheit = Wh</td>
</tr>
</tbody>
</table>

Hauptmenü > Inbetriebnahme > Einstellungen oder
Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Datenerfassung > Zähler > Zähler 1...2 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulseinheit</td>
<td>Wh, kWh, MWh, kJ, MJ, GJ, ml, l, m3, Heizkosteneinheit, Ohne Einheit, BTU</td>
<td>kWh</td>
</tr>
<tr>
<td>Impulswertigkeit Zähler</td>
<td>1…9999 pro Impuls</td>
<td>1</td>
</tr>
<tr>
<td>Impulswertigkeit Nenner</td>
<td>1…9999 pro Impuls</td>
<td>1</td>
</tr>
</tbody>
</table>

9.2.4 Überlaufswert

Der Überlaufwert sorgt dafür, dass die Anzeige auf dem Display des angeschlossenen Zählers gleich ist, wie auf dem Regler. Es kann der Wert eingestellt werden, bei dem die Anzeige des Zählers wieder auf 0 zurück springt. Die Einheit und die Kommastelle sind von der angezeigten Einheit und vom angezeigten Format abhängig.

Hinweis

Dieser Wert lässt sich nur via dem Softwaretool OCI700.1 verstellen.

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überlaufwert</td>
<td>0…999'999'999</td>
<td>99'999'999</td>
</tr>
</tbody>
</table>

9.2.5 Zählerstände setzen und rücksetzen

Der Stand des Impulszählers kann durch das Servicepersonal bei Abweichungen über die Bedienzeile "Zählerstand aktuell" angepasst werden.

Hinweis

Dieser Wert lässt sich nur via dem Softwaretool OCI700.1 verstellen

In der Bedienzeile "Monatswerte zurücksetzen" können die letzten 15 Monatswerte gelöscht werden. Der aktuelle Zählerstand bleibt erhalten.

Zählerstände setzen und rücksetzen

Hauptmenü > Inbetriebnahme > Einstellungen oder
Hauptmenü > Einstellungen > Datenerfassung > Zähler > Zählerwert 1...2 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monatswerte zurücksetzen</td>
<td>Nein, Ja</td>
<td>Nein</td>
</tr>
</tbody>
</table>
9.2.6 Anzeige der Zählerstände

Es werden der aktuelle Zählerstand sowie das Datum und der Stand der letzen 15 Monate angezeigt.

<table>
<thead>
<tr>
<th>Anzeigenwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Datenerfassung > Zähler 1...2</td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Zählerstand aktuell</td>
</tr>
<tr>
<td>Einheit</td>
</tr>
<tr>
<td>[Auslesung 1] Datum</td>
</tr>
<tr>
<td>[Auslesung 1] Zählerstand</td>
</tr>
<tr>
<td>....</td>
</tr>
<tr>
<td>[Auslesung 15] Datum</td>
</tr>
<tr>
<td>[Auslesung 15] Zählerstand</td>
</tr>
</tbody>
</table>

Die Monatswerte werden jeweils am Ende des Monats um Mitternacht abgespeichert.
Die 15 Monatswerte lassen sich in der Passwortebene in der Bedienzeile "Monatswerte zurücksetzen" löschen.

9.2.7 Zuordnung von Texten

Jedem Zähler lässt sich ein spezifischer Text zuordnen. Dieser Text wird als Menütex- und Bedienzeilentext auf den Bedienseiten angezeigt.

<table>
<thead>
<tr>
<th>Freier Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Einstellungen oder</td>
</tr>
<tr>
<td>Hauptmenü > Einstellungen > Datenerfassung > Zähler > Zählerwert 1..2</td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Zähler x</td>
</tr>
</tbody>
</table>

9.2.8 Fehlerbehandlung

Batteriebetriebene oder mechanische Zähler zählen zum Teil auch bei einem Stromausfall weiter. Während eines Stromausfalls, von dem der Regler betroffen ist, werden die Impulse nicht gezählt.

10 Aggregate

10.1 Ventilator (Grundtyp A, P)

Der Ventilatorblock steuert und überwacht die angeschlossenen Ventilatoren.

Folgende Ventilatoren werden unterstützt:
- Ventilator 1-stufig
- Ventilator 2-stufig
- Ventilator mit variabler Drehzahl

Ansteuerungsmöglichkeiten für Ventilatoren mit variabler Drehzahl:
- Zuordnung fixer Drehzahlen für 1- oder 2-stufigen Betrieb, ohne und mit Übersteuerung durch Luftqualitätsregler
- Regelung auf konstanten Kanaldruck (Messung statischer Druck)
- Regelung auf konstanten Volumenstrom für 1- oder 2-stufigen Betrieb (2 Sollwerte, Messung dynamischer Druck)
- Regelung auf konstanten Volumenstrom für 1- oder 2-stufigen Betrieb (2 Sollwerte, Messung lineares Volumenstromsignal)

Erklärung der Symbole

<table>
<thead>
<tr>
<th>Eingänge</th>
<th>Ausgänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingang-Druckfühler</td>
<td>Vorbefehl (Kapitel 10.1.9)</td>
</tr>
<tr>
<td>Vorbefehl-Rückmeldung</td>
<td></td>
</tr>
<tr>
<td>Strömungsmeldung</td>
<td>Ausgang Stufe 1, Stufe 2</td>
</tr>
<tr>
<td>Überlastmeldung</td>
<td>Drehzahl (Kapitel 10.1.8)</td>
</tr>
<tr>
<td>Startvorgabe 1, 2</td>
<td></td>
</tr>
<tr>
<td>Stoppvorgabe 1, 2</td>
<td></td>
</tr>
</tbody>
</table>

10.1.1 Aktivieren der Ventilatorblöcke

Die Ventilatoren können nur bei gewähltem Grundtyp A oder P aktiviert werden.

Die Steuerung der Ventilatoren erfolgt über die Betriebsart. Zusätzlich können folgende Funktionen die Ventilatoren ein- bzw. in eine höhere Stufe schalten:
- Kaskadenregler
- Stützbetrieb
- Umluftbetrieb
- Nachtkühlung
- Luftqualitätsregler

Hinweis

Die Ventilatoren können auch während den Betriebsarten "Prekomfort" und "Economy" durch die Funktionen "Stützbetrieb", "Umluftbetrieb" und "Nachtkühlung" eingeschaltet werden.
Die Aktivierung des Ventilatorblocks und die Art des Ventilatortyps erfolgt, indem dem Funktionsblock die entsprechenden Ausgänge zugeordnet werden und die entsprechende Regelungsart angegeben wird. Je nach Ventilatortyp müssen folgende Einstellungen vorgenommen werden:

Konfigurationsbeispiele

Grundtyp A

<table>
<thead>
<tr>
<th>Ventilatortyp</th>
<th>Ansteuerungsart</th>
<th>Bedienzeile</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-stufig</td>
<td>Ventilator 1-stufig</td>
<td>Stufe 1</td>
<td>N.Qx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stufe 2</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drehzahl</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Druckfühler</td>
<td>---</td>
</tr>
<tr>
<td>2-stufig</td>
<td>Ventilator 2-stufig</td>
<td>Stufe 1</td>
<td>N.Qx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stufe 2</td>
<td>N.Qx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drehzahl</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Druckfühler</td>
<td>---</td>
</tr>
<tr>
<td>variable</td>
<td>Zuordnung fixer Drehzahlen für 1- oder 2-stufigen Betrieb</td>
<td>Stufe 1</td>
<td>N.Qx</td>
</tr>
<tr>
<td>Drehzahl</td>
<td></td>
<td>Stufe 2</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drehzahl</td>
<td>N.Yx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Druckfühler</td>
<td>---</td>
</tr>
</tbody>
</table>

Regelung auf konstanten Kanaldruck (Messung statischer Druck)

<table>
<thead>
<tr>
<th>Ventilatortyp</th>
<th>Ansteuerungsart</th>
<th>Bedienzeile</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stufe 1</td>
<td>N.Qx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stufe 2</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drehzahl</td>
<td>N.Yx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Druckfühler</td>
<td>N.Xx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regelungsart</td>
<td>Kanaldruck (DP stat.)</td>
</tr>
</tbody>
</table>

Regelung auf konstanten Volumenstrom für 1- oder 2-stufigen Betrieb (2 Sollwerte, Messung dynamischer Druck)

<table>
<thead>
<tr>
<th>Ventilatortyp</th>
<th>Ansteuerungsart</th>
<th>Bedienzeile</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stufe 1</td>
<td>N.Qx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stufe 2</td>
<td>N.Yx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drehzahl</td>
<td>N.Xx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Druckfühler</td>
<td>Regelungsart</td>
</tr>
</tbody>
</table>

Regelung auf konstanten Volumenstrom für 1- oder 2-stufigen Betrieb (2 Sollwerte, Messung lineares Volumenstromsignal)

<table>
<thead>
<tr>
<th>Ventilatortyp</th>
<th>Ansteuerungsart</th>
<th>Bedienzeile</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stufe 1</td>
<td>N.Qx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stufe 2</td>
<td>N.Yx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drehzahl</td>
<td>N.Xx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Druckfühler</td>
<td>Regelungsart</td>
</tr>
</tbody>
</table>
Konfigurationsbeispiele Grundtyp P

<table>
<thead>
<tr>
<th>Ventilatortyp</th>
<th>Ansteuerungsart</th>
<th>Bedienzeile</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable</td>
<td>Regelung auf konstanten Kanaldruck (Messung statischer Druck)</td>
<td>Stufe 1 N.Qx</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drehzahl N.Yx</td>
<td>N.Xx Kanaldruck (DP stat.)</td>
</tr>
<tr>
<td>Drehzahl</td>
<td></td>
<td>Druckfühler N.Xx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regelung auf bedarfsgeführten Kanaldruck (Messung statischer Druck, Klappenstellungs signale analog oder via KNX Bus)</td>
<td>Stufe 1 N.Qx</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drehzahl N.Yx</td>
<td>N.Xx Kanaldruck (DP stat.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Druckfühler N.Xx</td>
<td></td>
</tr>
<tr>
<td>Regelungsart</td>
<td>Kanaldruck (DP stat.), Volumenstrom (DP dyn.), Volumenstrom (linear 0..10V)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Zuluftventilator |
Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Abluftventilator |

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator Stufe 1</td>
<td>---, N.Q1, N.Q2, ... (nur freie Ausgänge)</td>
</tr>
<tr>
<td>Ventilator Stufe 2</td>
<td>---, N.Q1, N.Q2, ... (nur freie Ausgänge)</td>
</tr>
<tr>
<td>Drehzahl</td>
<td>---, N.Y1, N.Y2, ... (nur freie Ausgänge)</td>
</tr>
<tr>
<td>Druckfühler</td>
<td>---, N.X1, N.X2, ... (nur Pa, mbar, bar, m/s, 0000, 000.0)</td>
</tr>
<tr>
<td>Regelungsart</td>
<td>Kanaldruck (DP stat.), Volumenstrom (DP dyn.), Volumenstrom (linear 0..10V)</td>
</tr>
</tbody>
</table>

Den Ausgängen können beliebige freie Relais zugeordnet werden. Aus Gründen der Übersicht wird empfohlen, die Relais nebeneinander anzuordnen.

Hinweis

Zuerst soll immer der Zuluftventilator konfiguriert werden, da die Regler erst eingeschaltet werden, wenn der Zuluftventilator eingeschaltet hat.

10.1.2 Ventilator 1-stufig

Beispiel

1-stufiger Ventilator, Zuluft- und Abluftventilatoren gemeinsam angesteuert, ohne Überwachung.

Im Normalfall wird der Ventilator bei folgenden Betriebsarten eingeschaltet:

<table>
<thead>
<tr>
<th>Betriebsart</th>
<th>Ventilator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komfort:</td>
<td>Ein</td>
</tr>
<tr>
<td>Prekomfort:</td>
<td>Ein</td>
</tr>
<tr>
<td>Economy:</td>
<td>Aus</td>
</tr>
</tbody>
</table>
Der aktuelle Zustand über die Ventilatoren wird am Bediengerät angezeigt.

Anzeigewerte

<table>
<thead>
<tr>
<th>Hauptmenü > Aggregate > Zuluftventilator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Zuluftventilator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hauptmenü > Aggregate > Abluftventilator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Abluftventilator</td>
</tr>
</tbody>
</table>

10.1.3 2-stufiger Ventilator

Beispiel

2-stufiger Ventilator, Zuluft- und Abluftventilatoren gemeinsam angesteuert, mit Überwachung.

Im Normalfall werden die Betriebsarten den Stufen wie folgt zugeordnet:

<table>
<thead>
<tr>
<th>Betriebsart</th>
<th>Ventilator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komfort:</td>
<td>Stufe 2</td>
</tr>
<tr>
<td>Prekomfort:</td>
<td>Stufe 1</td>
</tr>
<tr>
<td>Economy:</td>
<td>Aus</td>
</tr>
</tbody>
</table>

Folgendes ist beim 2-stufigen Ventilator zu beachten:
- Es sind nie beide Stufen gleichzeitig eingeschaltet (dies ist in der Software verriegelt)
- Wird beim Einschalten direkt die 2. Stufe gewählt, so wird zuerst für eine einstellbare Zeit (Hochlaufzeit) die 1. Stufe eingeschaltet und dann auf die 2. Stufe hochgeschaltet
- Beim Zurückschalten von der 2. auf die 1. Stufe schaltet der Regler die 2. Stufe ab, die 1. Stufe wird erst nach Ablauf der Austrudelzeit eingeschaltet
- Werden Aussenluft- und Fortluftabsperrklappen (Federrücklaufmotoren) verwendet und wird nicht der Vorbefehlsausgang verwendet, so muss über ein abfallverzögertes Zeitrelais sichergestellt werden, dass die Klappen nicht zuschnellen, während der Ventilator austrudelt

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochlaufzeit</td>
<td>00.00...10.00 m:s</td>
<td>00.10 m:s</td>
</tr>
<tr>
<td>Austrudelzeit</td>
<td>00.00...10.00 m:s</td>
<td>00.10 m:s</td>
</tr>
</tbody>
</table>
Der aktuelle Zustand über die Ventilatoren wird am Bediengerät angezeigt.

Anzeigewerte

| Hauptmenü > Aggregate > Zuluftventilator > |
| --- | --- |
| Bedienzeile | Bemerkung |
| Zuluftventilator | Anzeige der aktuellen Ventilatorstufe: Aus, Stufe 1, Stufe 2 |

| Hauptmenü > Aggregate > Abluftventilator > |
| --- | --- |
| Bedienzeile | Bemerkung |
| Abluftventilator | Anzeige der aktuellen Ventilatorstufe: Aus, Stufe 1, Stufe 2 |

10.1.4 Ventilator mit variabler Drehzahl

Zuordnung fixer Drehzahlen für 1- oder 2-stufigen Betrieb

Anstelle von Relaisausgängen werden die Ventilatorstufen für den Frequenzumformer über ein 0...10 V Signal ausgegeben. Es können den beiden Stufen fixe Drehzahlen zugeordnet werden. Gleichzeitig wird die Drehzahlsteuerung vom Luftqualitätsregler (siehe Kapitel 16 "Luftqualitätsregler (Grundtyp A, P)") übernommen. Es erfolgt eine Maximalauswahl.

Im Normalfall werden die Betriebsarten den Stufen wie folgt zugeordnet:

<table>
<thead>
<tr>
<th>Betriebsart</th>
<th>Ventilator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komfort:</td>
<td>Stufe 2</td>
</tr>
<tr>
<td>Prekomfort:</td>
<td>Stufe 1</td>
</tr>
<tr>
<td>Economy:</td>
<td>Aus</td>
</tr>
</tbody>
</table>

Einstellwerte

| Hauptmenü > Inbetriebnahme > Einstellungen > ... oder |
| --- | --- |
| Hauptmenü > Einstellungen > Aggregate > Zuluftventilator > |
| Hauptmenü > Einstellungen > Aggregate > Abluftventilator > |

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufe 1</td>
<td>0...100 %</td>
<td>30 %</td>
</tr>
<tr>
<td>Stufe 2</td>
<td>0...100 %</td>
<td>70 %</td>
</tr>
</tbody>
</table>

Hinweis

Für 1-stufigen Betrieb werden die Sollwerte Stufe 1 und Stufe 2 gleichgesetzt.

Wird keine fixe Drehzahl über die Betriebsarten gewünscht, sondern soll der Ventilator nur über die Luftqualität stetig angesteuert werden, so muss hier für beide Stufen 0% eingestellt werden.

Verlangt der Luftqualitätsregler eine höhere Drehzahl, so wird die Drehzahl stetig erhöht (siehe Kapitel 16.5 Erhöhen der Ventilatordrehzahl (Grundtyp A, P)).
Der aktuelle Zustand der Ventilatoren wird am Bediengerät angezeigt.

Anzeigewerte

<table>
<thead>
<tr>
<th>Hauptmenü > Aggregate > Zuluftventilator ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Zuluftventilator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hauptmenü > Aggregate > Abluftventilator ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Abluftventilator</td>
</tr>
</tbody>
</table>

Regelung auf Kanaldruck (Messung statischer Druck)

Beispiel 1
Zu- und Abluft werden mit einem Variablen Volumenstrom (VVS)-Regler mit Ventilator auf Vordruck geregelt

Beispiel 2
- Die Zuluft wird mit einem VVS-Regler mit Zuluftventilator auf Vordruck geregelt
- Der Abluftventilator wird auf konstanten Raum- oder Gebäudeüber- oder -unterdruck geregelt
Die Zuluft wird mit einem VVS-Regler mit Zuluftventilator auf Vordruck geregelt.
Der Abluftventilator wird auf Volumenstrom geregelt; der Sollwert des Abluftvolumenstroms wird nach dem Zuluftvolumenstrom geführt.

Im Normalfall werden die Betriebsarten wie folgt zugeordnet:

<table>
<thead>
<tr>
<th>Betriebsart</th>
<th>Ventilator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komfort: Ein</td>
<td></td>
</tr>
<tr>
<td>Prekomfort: Ein</td>
<td></td>
</tr>
<tr>
<td>Economy: Aus</td>
<td></td>
</tr>
</tbody>
</table>

Soll der Druck im Kanalnetz geregelt werden (z. B. VVS), so muss dafür ein Eingang als Druckfühler konfiguriert werden. Mit dieser Konfiguration wird auch der PI-Druckregler aktiviert.
Neben dem Drucksollwert können die entsprechenden Regelparameter Xp und Tn und die minimale Drehzahl eingestellt werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienelemente</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Druck-Sollwert</td>
<td>je nach gewähltem Eingangsbezeichner</td>
<td>300 Pa / 30 mbar / 3 bar</td>
</tr>
<tr>
<td>Druckregler-Xp</td>
<td>je nach gewähltem Eingangsbezeichner</td>
<td>1000 Pa / 50 mbar / 5 bar</td>
</tr>
<tr>
<td>Druckregler-Tn</td>
<td>00.00...10.00 m:s</td>
<td>02.00 m:s</td>
</tr>
<tr>
<td>Drehzahl minimal</td>
<td>0...100 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Hauptmenü > Inbetriebnahme > Einstellungen > oder
Hauptmenü > Einstellungen > Aggregate > Zuluftventilator >
Hauptmenü > Einstellungen > Aggregate > Abluftventilator >

Der aktuelle Zustand über die Ventilatoren wird am Bediengerät angezeigt.

Anzeigewerte

<table>
<thead>
<tr>
<th>Bedienelemente</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluftventilator</td>
<td>Anzeige der aktuellen Ventilatordrehzahl: 0...100 %</td>
</tr>
<tr>
<td>Druck-Istwert</td>
<td></td>
</tr>
<tr>
<td>Druck-Sollwert</td>
<td></td>
</tr>
</tbody>
</table>

Hauptmenü > Aggregate > Zuluftventilator >

<table>
<thead>
<tr>
<th>Bedienelemente</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abluftventilator</td>
<td>Anzeige der aktuellen Ventilatordrehzahl: 0...100 %</td>
</tr>
<tr>
<td>Druck-Istwert</td>
<td></td>
</tr>
<tr>
<td>Druck-Sollwert</td>
<td></td>
</tr>
</tbody>
</table>

Hauptmenü > Aggregate > Abluftventilator >

Regelung auf konstanten Volumenstrom für 1- oder 2 stufigen Betrieb

<table>
<thead>
<tr>
<th>Bedienelemente</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einheit</td>
<td>Max 20 Charakter</td>
<td></td>
</tr>
<tr>
<td>Stufe 1</td>
<td>0…999.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Stufe 2</td>
<td>0…999.9</td>
<td>1.5</td>
</tr>
<tr>
<td>P-Band Xp</td>
<td>0…999.9</td>
<td>10.0</td>
</tr>
<tr>
<td>Nachstellzeit Tn</td>
<td>00.00...59.55 m:s</td>
<td>02.00 m:s</td>
</tr>
<tr>
<td>K-Faktor</td>
<td>0.0…999.9</td>
<td>45.7</td>
</tr>
<tr>
<td>Drehzahl minimal</td>
<td>0...100 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Hauptmenü > Inbetriebnahme > Einstellungen > oder
Hauptmenü > Einstellungen > Aggregate > Zuluftventilator >
Hauptmenü > Einstellungen > Aggregate > Abluftventilator >

Am Eingang muss ein Volumenstromsignal zur Verfügung stehen.
2 Arten von Volumenstromsignalen sind möglich:
- Fall 1: gemessen wird der dynamische Druck (Signal 0…10 V entspricht 0..100% dynamischer Druck); daraus wird intern der Volumenstrom berechnet
- Fall 2: gemessen wir direkt der Volumenstrom (Signal am Eingang: 0…10 V entspricht 0…100 % Volumenstrom)
Einheit:
Diese Bedienzeile enthält die Einheit als Texteintrag. Sie wird bei den Anzeigewerten des Volumenstroms angezeigt. Die Zahlenwerte sind abgestimmt auf die Standardeinheit m³/s. Wird eine andere Einheit gewünscht (z. B. m³/h), so muss dies in den K-Faktor eingerechnet werden.

Stufe 1, Stufe 2:
Mit einem 2-stufigen Ventilator kann auf die Volumenstromwerte für Stufe 1 und 2 geregelt werden.

Hinweis
Für 1-stufigen Betrieb werden die Sollwerte Stufe 1 und Stufe 2 gleichgesetzt.

K-Faktor:
Fall 1
Ist die Messung des dynamischen Drucks (interne Berechnung des Volumenstroms) konfiguriert (Fall 1), muss der anlagenspezifische K-Faktor ermittelt und in dieser Bedienzeile angegeben werden.

Zur Bestimmung des K-Faktors wird folgende Formel verwendet:

\[K\text{-Faktor} = \frac{Volumenstrom}{\sqrt{\Delta p_{dyn}}} \times 1000 \]

K-Faktor: Beispiel 1
Gegeben sind der dynamische Druck und der Volumenstrom an einem Betriebspunkt.

Der gemessene dynamische Druck von 500 [Pa] entspricht im Betriebspunkt einem Volumenstrom von 3,0 [m³/s] (10'800 [m³/h]).

Das ergibt einen K-Faktor von

\[\frac{3\ [m^3/s]}{\sqrt{500\ [Pa]}} \times 1000 = 134 \]

K-Faktor: Beispiel 2
Gegeben sind die Querschnittsfläche des Luftkanals, der Volumenstrom und die Luftdichte.

Ein Luftkanal hat die Dimensionen (Breite * Höhe) 750 * 400 mm und damit den Querschnitt A = 0,3 m². Der Volumenstrom ist 1,4 [m³/s] (5'000 [m³/h]).

Daraus ergibt sich eine Luftgeschwindigkeit von:

\[v = \frac{Volumenstrom}{Fläche} = \frac{1,4\ [m^3/s]}{0,3[m²]} = 4,67\ [m/s] \]

Aus der Luftgeschwindigkeit und der Luftdichte kann mit folgender Formel der dynamische Druck berechnet werden:

\[\Delta p_{dyn} = \frac{1}{2} \rho \times v^2 = 12.2\ [Pa] \]

mit \(\rho \) = Dichte der Luft, ca. 1.12 [kg / m³]

Das ergibt einen K-Faktor von

\[\frac{1.4\ [m^3/s]}{\sqrt{12.2\ [Pa]}} \times 1000 = 401 \]

Fall 2
Steht von einer Volumenstrom Messbox gerade der Volumenstrom als 0…10 V-Signal zur Verfügung (Fall 2), so kann dieser Wert direkt verwendet werden. Es muss kein K-Faktor berechnet werden.
Der aktuelle Zustand über die Ventilatoren wird am Bediengerät angezeigt.

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluftventilator</td>
<td>Anzeige der aktuellen Ventilatordrehzahl: 0...100 %</td>
</tr>
<tr>
<td>Volumenstrom-Istwert</td>
<td></td>
</tr>
<tr>
<td>Volumenstrom-Sollwert</td>
<td></td>
</tr>
<tr>
<td>Einheit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abluftventilator</td>
<td>Anzeige der aktuellen Ventilatordrehzahl: 0...100 %</td>
</tr>
<tr>
<td>Volumenstrom-Istwert</td>
<td></td>
</tr>
<tr>
<td>Volumenstrom-Sollwert</td>
<td></td>
</tr>
<tr>
<td>Einheit</td>
<td></td>
</tr>
</tbody>
</table>

10.1.5 Schaltuhrvorrang Stufe 2

Wird der Ventilator 2-stufig betrieben (über Relais oder den stetigen Ausgang), so steht die folgende Funktion zur Verfügung:

Soll die 2. Stufe nicht über die Schaltuhr zugeschaltet werden, sondern bedarfsgeführt vom Luftqualitätsregler (siehe Kapitel 16 "Luftqualitätsregler (Grundtyp A, P)") und/oder vom Raumtemperaturregler (siehe Kapitel 11.6.3 "Raum/Zuluft- oder Abluft/Zuluft-Kaskadenregelung"), so werden die Stufen wie folgt den Betriebsarten zugeordnet:

<table>
<thead>
<tr>
<th>Betriebsart</th>
<th>Ventilator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komfort: Stufe 1</td>
<td></td>
</tr>
<tr>
<td>Prekomfort: Stufe 1</td>
<td></td>
</tr>
<tr>
<td>Economy: Aus</td>
<td></td>
</tr>
</tbody>
</table>

Dazu wird der Schaltuhrvorrang Stufe 2 auf Nein gesetzt.

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltuhrvorrang Stufe 2</td>
<td>Nein, Ja</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Siemens
Building Technologies
10.1.6 Sperren der Stufe 2 bei tiefen Aussentemperaturen

Wird der Ventilator 2-stufig betrieben (über Relais oder den stetigen Ausgang), so steht folgende Funktion zur Verfügung: Die 2. Stufe kann bei tiefen Aussentemperaturen gesperrt werden.

Steigt die Aussentemperatur wieder um 2 K über den eingestellten Wert, wird die 2. Stufe wieder freigegeben.

Wird keine Sperrung nach Aussentemperatur gewünscht, muss der entsprechende Einstellwert auf "----" gesetzt werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperren Stufe 2 (TA-bedingt)</td>
<td>----, -50...+150 °C</td>
<td>----</td>
</tr>
</tbody>
</table>

Fehlt die Aussentemperatur und die Funktion "Sperren Stufe 2 (TA-bedingt)" ist aktiviert, so wird die 2. Stufe gesperrt.

10.1.7 Strömungsmeldung

Als Strömungsüberwachung kann ein Strömungswächter oder -fühler eingesetzt werden.

Soll der Ventilator eingeschaltet werden und kommt nach einer einstellbaren Zeit (Strömungsverzögerung Start) keine Rückmeldung, wird eine Störungsmeldung ausgelöst und die Anlage wird ausgeschaltet. Fällt das Signal während des Betriebs ab, wird auch eine Störungsmeldung ausgelöst und die Anlage wird ausgeschaltet. Da während des Betriebs Schwankungen bei der Messung auftreten können, kann auch hier eine Verzögerungszeit eingestellt werden (Strömungsverzögerung Betrieb).

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strömungsmeldung</td>
<td>----, N.X1, N.X2,... (digitale und analoge Eingänge) *)</td>
</tr>
</tbody>
</table>

*) Bei den analogen Eingängen sind nur solche mit den Einheiten m/s, bar, mbar, Pa, Universal 000.0, Universal 0000 möglich

Die Schaltwerte für die Strömungsstörung können eingestellt werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strömungsverzögerung Start</td>
<td>00.00...59.55 m:s</td>
<td>02.00 m:s</td>
</tr>
<tr>
<td>Strömungsverzögerung Betrieb</td>
<td>00.00...59.55 m:s</td>
<td>00.05 m:s</td>
</tr>
</tbody>
</table>

Die Schaltwerte für die Strömungsstörung können eingestellt werden.
Tritt bei beim Ventilator eine Strömungsstörung auf, wird die Anlage ausgeschaltet. Es wird eine der nachfolgenden Störungsmeldungen ausgegeben.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1112</td>
<td>Zuluft-Strömungsstörung</td>
<td>Dringende Meldung mit Anlagenstopp; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1122</td>
<td>Abluft-Strömungsstörung</td>
<td>Dringende Meldung mit Anlagenstopp; muss quittiert und entriegelt werden</td>
</tr>
</tbody>
</table>

10.1.8 Überlastmeldung

Hier kann z. B. die Überlastüberwachung eines Motorschutzschalters angeschlossen werden.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Zuluft-Überlast</td>
<td>Dringende Meldung mit Anlagenstopp; muss quittiert werden</td>
</tr>
<tr>
<td>1121</td>
<td>Abluft-Überlast</td>
<td>Dringende Meldung mit Anlagenstopp; muss quittiert werden</td>
</tr>
</tbody>
</table>

10.1.9 Vorbefehl

Konfiguration

- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Zuluftventilator >
- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Abluftventilator >

Bedienzeile

<table>
<thead>
<tr>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldunmeldung ---, N.Q1, N.Q2, ... (nur freie Ausgänge)</td>
</tr>
</tbody>
</table>

Steht an diesem Eingang die Überlastmeldung an, wird eine Störungsmeldung ausgelöst und die Anlage wird ausgeschaltet. Die Anlage startet wieder, sobald die Meldung am Eingang nicht mehr ansteht.

Einstellwerte

- Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
- Hauptmenü > Einstellungen > Aggregate > Zuluftventilator >
- Hauptmenü > Einstellungen > Aggregate > Abluftventilator >

Bedienzeile

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorbefehl-Einlaufzeit</td>
<td>00.00...59.55 m:s</td>
</tr>
<tr>
<td>Vorbefehl-Auslaufzeit</td>
<td>00.30 m:s</td>
</tr>
</tbody>
</table>

Störungsmeldungen
10.1.10 Vorbeefehl-Rückmeldung

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate Zuluftventilator >

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Abluftventilator >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorbeefehl-Rückmeldung</td>
<td>---, N.X1, N.X2,... (nur digitale Eingänge)</td>
</tr>
</tbody>
</table>

Wenn innerhalb der eingestellten Vorbeefehl-Einlaufzeit keine Vorbeefehl-Rückmeldung erfolgt, wird eine Störungsmeldung ausgegeben und der Ventilator nicht gestartet. Der Vorbeefehl "Aus" erfolgt nach Ablauf der Vorbeefehl-Auslaufzeit.

Hinweis

Die Verwendung der Vorbeefehl-Rückmeldung ist nur in Kombination mit dem konfigurierten Vorbeefehl sinnvoll.

Funktionsdiagramm

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1114</td>
<td>Zuluft Vorbeefehl keine Rückmeldung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1124</td>
<td>Abluft Vorbeefehl keine Rückmeldung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
</tbody>
</table>

Legende

- PcmdRnup = Vorbeefehl-Einlaufzeit
- PcmdRndw = Vorbeefehl-Auslaufzeit

Störungsmeldungen

1114

Zuluft Vorbeefehl keine Rückmeldung

Dringende Meldung; muss quittiert und entriegelt werden

1124

Abluft Vorbeefehl keine Rückmeldung

Dringende Meldung; muss quittiert und entriegelt werden
10.1.11 Start- und Stoppvorgaben

Für jeden Ventilator können zwei Eingänge als Stoppvorgabe konfiguriert werden. Zusätzlich können zwei Eingänge als Startvorgabe konfiguriert werden, an denen dann die jeweilige Stufe eingestellt werden kann.

Konfiguration

- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate Zuluftventilator >
- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Abluftventilator >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startvorgabe 1</td>
<td>---, N.X1, N.X2,... (digitale und analoge Eingänge)</td>
</tr>
<tr>
<td>Startvorgabe 2</td>
<td>---, N.X1, N.X2,... (digitale und analoge Eingänge)</td>
</tr>
<tr>
<td>Stoppvorgabe 1</td>
<td>---, N.X1, N.X2,... (digitale und analoge Eingänge)</td>
</tr>
<tr>
<td>Stoppvorgabe 2</td>
<td>---, N.X1, N.X2,... (digitale und analoge Eingänge)</td>
</tr>
</tbody>
</table>

Einstellwerte

- Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
- Hauptmenü > Einstellungen > Aggregate > Zuluftventilator >
- Hauptmenü > Einstellungen > Aggregate > Abluftventilator >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufen-Startvorgabe 1</td>
<td>Stufe 1, Stufe 2</td>
<td>Stufe 1</td>
</tr>
<tr>
<td>Stufen-Startvorgabe 2</td>
<td>Stufe 1 Stufe 2</td>
<td>Stufe 2</td>
</tr>
</tbody>
</table>

Einstellwerte

- Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
- Hauptmenü > Einstellungen > Aggregate > Zuluftventilator >
- Hauptmenü > Einstellungen > Aggregate > Abluftventilator >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Startwert 1] Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Startwert 1] Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Startwert 2] Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Startwert 2] Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Stoppwert 1] Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Stoppwert 1] Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Stoppwert 2] Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Stoppwert 2] Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
</tbody>
</table>

Wird über die Stoppvorgaben des Zuluftventilators ausgeschaltet, so wird die ganze Lüftungsanlage (Sequenzregler, Kommunikation, …) ausgeschaltet. Die Startvorgaben des Zuluftventilators sowie die Startvorgaben und die Stoppvorgaben des Abluftventilators haben keinen Einfluss auf die anderen Anlagenkomponenten.

Stoppvorgaben haben grösse Priorität als Startvorgaben (siehe auch Kapitel 10.1.20).
10.1.12 Nachlauf Stufenschalter

Wenn in der gleichen Anlage ein Stufenschalter mit Nachlauf konfiguriert wurde, hat der Nachlauf des Stufenschalters höhere Priorität als die Stoppvorgabe des Zuluftventilators.

Wird also der Zuluftventilator über eine Stoppvorgabe ausgeschaltet, wird der Nachlauf des Stufenschalters eingehalten. Der Nachlauf des Stufenschalters wirkt im laufenden Betrieb in der aktuellen Ventilatorstufe und bei Anlagenabschaltung in der Stufe 1.

10.1.13 Stütz-/Umluftbetrieb (Grundtyp A)

Für den Abluftventilator kann angegeben werden, ob er im Stütz- oder Umluftbetrieb ein- oder ausgeschaltet sein soll. Siehe auch Kapitel 20 "Umluftbetrieb (Grundtyp A)". Voraussetzung für diese Funktion ist die Aktivierung der Mischluftklappe.

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stütz-/Umluftbetrieb</td>
<td>Aus, Ein</td>
<td>Aus</td>
</tr>
</tbody>
</table>

Beispiel

Ventilatoranordnung, bei der im Umluftbetrieb der Abluftventilator ausgeschaltet werden muss:

Hinweis

Bei dieser Ventilatoranordnung ist es empfehlenswert, die Anfahrschaltung der Mischluftklappe (Kap. 10.5.10) zu deaktivieren.

10.1.14 Anlaufverzögerung

Hinweis

Zuerst soll immer der Zuluftventilator konfiguriert werden, da die Regler erst eingeschaltet werden, wenn der Zuluftventilator eingeschaltet hat.

Sollen der Zuluftventilator und der Abluftventilator gemeinsam eingeschaltet werden, so braucht nur der Zuluftventilator aktiviert werden. Der Abluftventilator kann am gleichen Relais parallel angeschlossen werden.

Für beide Ventilatoren kann eine Anlaufverzögerung vorgegeben werden. Dies erlaubt z. B. den Zuluftventilator verzögert einzuschalten, damit nicht beide Ventilatoren gleichzeitig starten und das Stromnetz übermässig belasten.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anlaufverzögerung</td>
<td>00.00...59.55 m:s</td>
<td>00.00 m:s</td>
</tr>
</tbody>
</table>
10.1.15 Betriebsstundenzähler

Für jeden Ventilator werden die Betriebsstunden erfasst. Der Zähler zählt maximal bis 99'999 Stunden, danach beginnt der Zähler wieder bei 0.

<table>
<thead>
<tr>
<th>Anzeigewerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Aggregate > Zuluftventilator</td>
</tr>
<tr>
<td>Hauptmenü > Aggregate > Abluftventilator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsstunden Stufe 1</td>
<td>0...99'999 h</td>
</tr>
<tr>
<td>Betriebsstunden Stufe 2</td>
<td>0...99'999 h</td>
</tr>
</tbody>
</table>

10.1.16 Betriebsstundenzähler setzen

Der Zähler lässt sich durch das Servicepersonal auf einen definierten Wert oder auf 0 zurücksetzen. Dieser Wert ist nur in der Passwortebene verstellbar.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Einstellungen > oder</td>
</tr>
<tr>
<td>Hauptmenü > Einstellungen > Aggregate > Zuluftventilator</td>
</tr>
<tr>
<td>Hauptmenü > Einstellungen > Aggregate > Abluftventilator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsstunden Stufe 1</td>
<td>0...99'999 h</td>
<td>0</td>
</tr>
<tr>
<td>Betriebsstunden Stufe 2</td>
<td>0...99'999 h</td>
<td>0</td>
</tr>
</tbody>
</table>

10.1.17 Zuordnung von Texten

Die Texte für die Ventilatoren können über die Bedienung angepasst werden. Sie werden in der entsprechenden Bedienzeile und im Menü angezeigt.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Einstellungen > oder</td>
</tr>
<tr>
<td>Hauptmenü > Einstellungen > Aggregate > Zuluftventilator</td>
</tr>
<tr>
<td>Hauptmenü > Einstellungen > Aggregate > Abluftventilator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluftventilator</td>
<td>max. 20 Zeichen</td>
<td>Zuluftventilator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abluftventilator</td>
<td>max. 20 Zeichen</td>
<td>Abluftventilator</td>
</tr>
</tbody>
</table>

Alle Ventilatoreinstellungen besitzen einstellbare Alarmtexte:

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Einstellungen > oder</td>
</tr>
<tr>
<td>Hauptmenü > Einstellungen > Aggregate > Zuluftventilator</td>
</tr>
<tr>
<td>Hauptmenü > Einstellungen > Aggregate > Abluftventilator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluft-Überlast</td>
<td>max. 20 Zeichen</td>
<td>Zuluft-Überlast</td>
</tr>
<tr>
<td>Zuluft-Strömungsstörung</td>
<td>max. 20 Zeichen</td>
<td>Zuluft-Strömung</td>
</tr>
<tr>
<td>Zuluft-Druckdiff.-Fühlerfehler</td>
<td>max. 20 Zeichen</td>
<td>Zuluft-Druckdiff.</td>
</tr>
<tr>
<td>Zuluft Vorbeaufschaltung keine Rückmeldung</td>
<td>max. 20 Zeichen</td>
<td>[Zul]Vorbef.k.R'mlg</td>
</tr>
<tr>
<td>Abluft-Überlast</td>
<td>max. 20 Zeichen</td>
<td>Abluft-Überlast</td>
</tr>
<tr>
<td>Abluft-Strömungsstörung</td>
<td>max. 20 Zeichen</td>
<td>Abluft-Strömungsstörung</td>
</tr>
</tbody>
</table>
10.1.18 Verdrahtungstest

Während des Verdrahtungstests können die Ventilatoren über den Steuerschalter direkt ein- und ausgeschaltet werden.

Verdrahtungstest

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluftventilator</td>
<td>max. 20 Zeichen</td>
<td>Abluft-Druckdiff.</td>
</tr>
<tr>
<td>Zuluftventilator</td>
<td>Aus, Ein oder Aus, Stufe 1, Stufe 2 oder ----, 0...100 %</td>
<td></td>
</tr>
<tr>
<td>Abluftventilator</td>
<td>Aus, Ein oder Aus, Stufe 1, Stufe 2 oder ----, 0...100 %</td>
<td></td>
</tr>
</tbody>
</table>

10.1.19 Fehlerbehandlung

Die Ventilatoren werden beim Auftreten einer Störungsmeldung, bei der ein Anlagenstopp ausgelöst wird, ausgeschaltet. Sie können erst wieder anlaufen, wenn keine Störungsmeldung mit Anlagenstopp mehr ansteht.

Wenn das Inbetriebnahmemenü verlassen wird, wird überprüft, ob die Druckfühler angeschlossen sind. Fehlt später einer der zu diesem Zeitpunkt angeschlossenen Druckfühler, wird eine Störungsmeldung abgesetzt. Der Ventilator wird bei fehlendem Druckfühler mit der eingestellten minimalen Drehzahl betrieben.

Störungsmeldungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1113</td>
<td>Zuluft-Druckdiff.-Fühlerfehler</td>
<td>Dringende Meldung; muss nicht quittiert werden</td>
</tr>
<tr>
<td>1123</td>
<td>Abluft-Druckdiff.-Fühlerfehler</td>
<td>Dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

10.1.20 Prioritäten

Für den Betrieb der Ventilatoren gelten folgende Prioritäten:

1. EIN/AUS während des Verdrahtungstests
2. AUS durch Ventilatorüberwachung (Strömungsmeldung, Überlastmeldung)
3. EIN durch Entrauchung
4. AUS durch Störungsmeldungen mit Anlagenstopp (siehe Kapitel 24 "Störungen")
5. EIN durch Nachlauf "Stufenschalter" (immer Stufe 1)
6. AUS durch Stoppvorgaben "Abluftventilator" (1+2)
7. AUS durch Stoppvorgaben "Zuluftventilator" (1+2)
8. EIN durch Startvorgabe 2
9. EIN durch Startvorgabe 1
10. Sperren Stufe 2 (TA-bedingt)
11. Keine Freigabe während die Vorwärmfunktion aktiv ist
12. Ein- oder Stufe höher schalten durch Stützbetrieb, Nachtkühlung oder Luftqualitätsregler
13. Vorgabe im Normalbetrieb (siehe Kapitel 6 "Betriebsarten")
10.2 Pumpe

Der Pumpenblock hat die Aufgabe, sämtliche Pumpenfunktionen zu steuern und zu überwachen. Es können Einfachpumpen oder Zwillingspumpen angesteuert werden.

Es steht folgende Anzahl Pumpenblöcke pro Universalreglertyp zur Verfügung:
- RMU710B: max. 2 Blöcke
- RMU720B: max. 3 Blöcke
- RMU730B: max. 4 Blöcke

<table>
<thead>
<tr>
<th>Eingänge</th>
<th>Ausgänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Vorbefehl-Rückmeldung](Kapitel 10.2.9)</td>
<td>![Vorbefehl](Kapitel 10.2.8)</td>
</tr>
<tr>
<td>![Strömungsmeldung](Kapitel 10.2.6)</td>
<td>![Pumpe A, Pumpe B – Ausgang](Kapitel 10.2.8)</td>
</tr>
<tr>
<td>![Pumpe A, Pumpe B Überlastmeldung](Kapitel 10.2.7)</td>
<td></td>
</tr>
<tr>
<td>![Startvorgabe 1, Startvorgabe 2](Kapitel 10.2.10)</td>
<td></td>
</tr>
<tr>
<td>![Stoppvorgabe 1, Stoppvorgabe 2](Kapitel 10.2.10)</td>
<td></td>
</tr>
<tr>
<td>![Betriebsartbedingt Ein](Kapitel 10.2.10)</td>
<td></td>
</tr>
</tbody>
</table>

Erklärung der Symbole

Für die optimale Steuerung und Überwachung bietet der Pumpenblock im RMU7..B für alle Pumpentypen die folgenden Funktionen an:
- Einstellbare Verzögerungszeiten
- Einschalten nach Aussentemperatur
- Frostbedingt Einschalten
- Wählbarer Pumpenkick
- Zuordnbarer Text
- Betriebsstundenzähler

10.2.1 Aktivieren des Pumpenblocks

Die Aktivierung des Pumpenblocks erfolgt durch die Zuordnung der entsprechenden Ausgänge.

Nachfolgend die gültigen Konfigurationen:

<table>
<thead>
<tr>
<th>Motor / Pumpen</th>
<th>Konfigurationspunkt</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einfachpumpe</td>
<td>Pumpe A</td>
<td>Qx</td>
</tr>
<tr>
<td></td>
<td>Pumpe B</td>
<td>Qx</td>
</tr>
<tr>
<td>Zwillingspumpe</td>
<td>Pumpe A</td>
<td>Qx</td>
</tr>
<tr>
<td></td>
<td>Pumpe B</td>
<td>Qx</td>
</tr>
</tbody>
</table>

Dem Ausgang kann ein beliebiges freies Relais zugeordnet werden. Aus Gründen der Übersicht wird empfohlen, die Relais nebeneinander anzuordnen.
10.2.2 Betriebsart

Damit die Pumpe über die Anlagenbetriebsart eingeschaltet werden kann, muss der Einstellwert "Betriebsartbedingt Ein" auf "Ja" eingestellt werden.

Konfiguration

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsartbedingt Ein</td>
<td>Ja, Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Die Pumpen werden gemäß der Anlagenbetriebsart eingeschaltet (z. B. auch bei Stützbetrieb, Nachtlüften usw.). Ist die Anlagenbetriebsart Aus, z. B. aufgrund einer Störung mit Anlagenstopp, so werden die Pumpen ausgeschaltet.

Die Pumpen sind im Normalbetrieb wie folgt den Betriebsarten zugeordnet:

<table>
<thead>
<tr>
<th>Raum-Betriebsart</th>
<th>Pumpe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komfort: Ein</td>
<td></td>
</tr>
<tr>
<td>Prekomfort: Ein</td>
<td></td>
</tr>
<tr>
<td>Economy: Aus</td>
<td></td>
</tr>
</tbody>
</table>

10.2.3 Lastabhängig von Regler

Die Pumpe kann auch vom Regler lastabhängig eingeschaltet werden (siehe Kapitel 15.1.1 "Zuordnung der Aggregate zu den Sequenzen").

Es können bis zu 3 Verdrahtungen von den Reglern vorgenommen werden, es gilt eine Maximalauswahl. Die Ein- und Ausschaltpunkte können über die Einstellungen "Lastbedingt Ein" und "Lastbedingt Aus" eingegeben werden. Bei normalem Gebrauch empfiehlt es sich, die Pumpe bei 5 % Last einzuschalten und bei einer Last von 0 % wieder auszuschalten.
Einstellwerte

- Hauptmenü > Inbetriebnahme > Einstellungen > ...
- oder
- Hauptmenü > Einstellungen > Aggregate > Pumpe 1...4

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lastbedingt Ein</td>
<td>0...100 %</td>
<td>5 %</td>
</tr>
<tr>
<td>Lastbedingt Aus</td>
<td>0...100 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Wenn der Einstellwert "Lastbedingt Ein" kleiner als der Einstellwert "Lastbedingt Aus" ist, wird der Wirksinn umgekehrt.

10.2.4 Zwillingspumpe

Beispiel

Ansteuerung einer Zwillingspumpe durch den Pumpenblock:
Für die optimale Steuerung einer Zwillingspumpe bietet der RMU7..B neben den Standardfunktionen zusätzliche Steuerungsfunktionen an:

- Laufprioritätsumschaltung automatisch, von Hand oder bei Pumpenstörung
- Einstellbare Umschaltdauer für eine geordnete Pumpenumschaltung

Laufprioritäts-Umschaltung

Die Laufprioritätsumschaltung kann automatisch, von Hand oder bei einer Störung erfolgen.

Einstellwert

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder

Hauptmenü > Einstellungen > Aggregate > Pumpe 1...4 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laufpriorität</td>
<td>Automatik</td>
<td>Automatik</td>
</tr>
<tr>
<td></td>
<td>Pumpe A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pumpe B</td>
<td></td>
</tr>
</tbody>
</table>

Umschaltung autom. (nach Zeit)

Ist in der Bedienzeile "Laufpriorität" die Einstellung "Automatik" gewählt, wird im störungsfreien Betrieb die Laufpriorität automatisch im Wochenrhythmus umgeschaltet. Die Umschaltung findet immer zu dem unter Pumpenkick eingestellten Zeitpunkt statt (der Pumpenkick selbst braucht nicht aktiviert zu sein).

Umschaltung von Hand

Wird keine Umschaltung nach Zeit gewünscht, kann einer Pumpe fix die Laufpriorität zugeordnet werden, indem in der Bedienzeile "Laufpriorität" die gewünschte Pumpe gewählt wird.

Die Umschaltung findet immer zu dem unter Pumpenkick eingestellten Zeitpunkt statt (der Pumpenkick selbst braucht nicht aktiviert zu sein).

Störumschaltung

Wenn eine Pumpe in Störung geht, wird die Laufpriorität fix auf die nicht gestörte Pumpe gesetzt. Wenn die Störung nicht mehr vorhanden ist, wird wieder auf die gleiche Laufpriorität wie vor der Störung umgeschaltet.

Umschaltdauer

Um ein geordnetes Wechseln der Laufpriorität zu erreichen, kann eine Umschaltdauer eingegeben werden.

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder

Hauptmenü > Einstellungen > Aggregate > Pumpe 1...4 >

<table>
<thead>
<tr>
<th>Bedienezeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umschaltdauer</td>
<td>–60...+60 s</td>
<td>0 s</td>
</tr>
</tbody>
</table>

- Wird hier eine Minuszahl eingegeben, so werden bei der Umschaltung für die eingegebene Zeit beide Pumpen eingeschalts.
- Wird eine positive Zahl eingegeben, so kann die zweite Pumpe erst wieder einschalten, wenn nach dem Abschalten der ersten Pumpe diese Zeit abgelaufen ist.

Hinweis

Die Umschaltdauer wird auch beim Pumpenkick berücksichtigt.

Verhalten bei Störung

Sind beide Pumpen gleichzeitig gestört, wird eine Störungsmeldung generiert und die Pumpen ausgeschaltet.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1210</td>
<td>[Pumpe 1] Störung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1220</td>
<td>[Pumpe 2] Störung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1230</td>
<td>[Pumpe 3] Störung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1240</td>
<td>[Pumpe 4] Störung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
</tbody>
</table>
10.2.5 Verzögerungszeiten

Beispiel

Legende

DlyOn = Einschaltverzögerung
DlyOff = Ausschaltverzögerung

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
Hauptmenü > Einstellungen > Aggregate > Pumpe 1...4 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einschaltverzögerung</td>
<td>00.00...59.55 m:s</td>
<td>00.00 m:s</td>
</tr>
<tr>
<td>Ausschaltverzögerung</td>
<td>00.00...59.55 m:s</td>
<td>01.00 m:s</td>
</tr>
</tbody>
</table>

Die Einschaltverzögerung und die Ausschaltverzögerung wirken immer für:
- Pumpen, die über die Betriebsart ein- oder ausgeschaltet werden
- Pumpen, die über die Sequenz lastabhängig eingeschaltet werden
- Pumpen, die über die Start- oder Stopp-Vorgabe ein- oder ausgeschaltet werden

Die Ausschaltverzögerung wirkt nicht bei folgenden Ausschaltbefehlen:
- vom Pumpenkick
- bei einer Störungsmeldung mit Anlagenstopp, wenn die Pumpe über die Betriebsart ein- und ausgeschaltet wird

10.2.6 Strömungsmeldung

Als Strömungswachtachung kann ein Strömungswächter oder -fühler eingesetzt werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Pumpen > Pumpe 1...4 >

Bedienzeile	Einstellbare Werte / Bemerkung
Strömungsmeldung | ---, N.X1, N.X2,... (digitale und analoge Eingänge) *)

*) Bei den analogen Eingängen sind nur solche mit den Einheiten m/s, bar, mbar, Pa, Universal 000.0, Universal 0000 möglich

Beim Start

Wird die Pumpe eingeschaltet und kommt nach der eingestellten Zeit ("Strömungsverzögerung Start") keine Rückmeldung, wird eine Störungsmeldung ausgelöst.

Beim Betrieb

Da während des Betriebs Schwankungen bei der Messung auftreten können, kann auch hier eine Verzögerungszeit eingestellt werden ("Strömungsverzögerung Betrieb"). Tritt eine Strömungsstörung während des Betriebs auf, wird eine Störungsmeldung ausgelöst.

Wird die Pumpe über die Betriebsart eingeschaltet (Einstellwert "Betriebsartbedingt Ein" auf "Ja"), wird bei einer hier beschriebenen Störungsmeldung nicht nur die Pumpe, sondern die ganze Anlage ausgeschaltet (Meldung mit Anlagenstopp). Ist der Einstellwert "Betriebsartbedingt Ein" auf "Nein" gesetzt, wird nur die Pumpe ausgeschaltet.
Hauptmenü > Inbetriebnahme > Einstellungen > oder Hauptmenü > Einstellungen > Aggregate > Pumpe 1...4 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strömungsverzögerung Start</td>
<td>00.00...59.55 m:s</td>
<td>02.00 m:s</td>
</tr>
<tr>
<td>Strömungsverzögerung Betrieb</td>
<td>00.00...59.55 m:s</td>
<td>00.05 m:s</td>
</tr>
</tbody>
</table>

Die Schaltwerte für die Strömungsstörung können eingestellt werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strömung Schaltwert Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>Strömung Schaltwert Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td></td>
</tr>
</tbody>
</table>

Tritt bei der Einfachpumpe eine Strömungsstörung auf, wird die Pumpe ausgeschaltet. Es wird eine der nachfolgenden Störungsmeldungen ausgegeben.

Einfachpumpe

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1212</td>
<td>[Pumpe 1] keine Strömung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1222</td>
<td>[Pumpe 2] keine Strömung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1232</td>
<td>[Pumpe 3] keine Strömung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1242</td>
<td>[Pumpe 4] keine Strömung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
</tbody>
</table>

Tritt bei Zwillingspumpen eine Strömungsstörung auf, wird automatisch auf den anderen Motor-Ausgang umgeschaltet. Es wird eine Störungsmeldung ausgegeben. Sind beide Pumpen gestört, wird die Störungsmeldung gemäss Kap. 10.2.4 "Zwillingspumpe" ausgegeben.

Hinweis

Bei der Laufpriorität-Umschaltung wird während der Umschaltzeit die Strömung nicht überwacht.

Zwillingspumpe

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1216</td>
<td>[Pumpe 1A] keine Strömung</td>
<td>Nicht dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1217</td>
<td>[Pumpe 1B] keine Strömung</td>
<td>Nicht dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1226</td>
<td>[Pumpe 2A] keine Strömung</td>
<td>Nicht dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1227</td>
<td>[Pumpe 2B] keine Strömung</td>
<td>Nicht dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1236</td>
<td>[Pumpe 3A] keine Strömung</td>
<td>Nicht dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1237</td>
<td>[Pumpe 3B] keine Strömung</td>
<td>Nicht dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1246</td>
<td>[Pumpe 4A] keine Strömung</td>
<td>Nicht dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1247</td>
<td>[Pumpe 4B] keine Strömung</td>
<td>Nicht dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
</tbody>
</table>
10.2.7 Überlastmeldung

Hier kann z. B. die Überlastüberwachung eines Motorschutzschalters angeschlossen werden.

- **Konfiguration**
 - Hauptmenü > Inbetriebnahme > Zusatzkonzfiguration > Aggregate > Pumpen > Pumpe 1...4 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Pumpe A] Überlast</td>
<td>---, N.X1, N.X2,... (nur digitale Eingänge)</td>
</tr>
<tr>
<td>[Pumpe B] Überlast</td>
<td>---, N.X1, N.X2,... (nur digitale Eingänge)</td>
</tr>
</tbody>
</table>

- **Hauptmenü > Inbetriebnahme > Einstellungen > oder**
 - Hauptmenü > Einstellungen > Aggregate > Pumpe 1...4 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Störungsquittierung</td>
<td>Keine, Quittieren, Quittieren und Entriegeln</td>
<td>Quittieren</td>
</tr>
</tbody>
</table>

Wird die Pumpe über die Betriebsart eingeschaltet (Einstellwert "Betriebsartbedingt Ein" auf "Ja"), wird bei einer hier beschriebenen Störungsmeldung nicht nur die Pumpe, sondern die ganze Anlage ausgeschaltet (Meldung mit Anlagenstopp). Ist der Einstellwert "Betriebsartbedingt Ein" auf "Nein" gesetzt, wird nur die Pumpe ausgeschaltet.

Überlastmeldungen

Einfachpumpe

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung in Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1211</td>
<td>[Pumpe 1] Überlast</td>
<td>Dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>1221</td>
<td>[Pumpe 2] Überlast</td>
<td>Dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>1231</td>
<td>[Pumpe 3] Überlast</td>
<td>Dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>1241</td>
<td>[Pumpe 4] Überlast</td>
<td>Dringende Meldung; muss quittiert werden</td>
</tr>
</tbody>
</table>

Zwillingspumpen

Wenn im Zwillingspumpen-Betrieb nur eine Pumpe gestört ist, wechselt die Laufpriorität fix auf den nicht gestörten Pumpenausgang. Die Einstellung der Störungsquittierung hat keinen Einfluss auf die Umstellung. Die entsprechende Überlastmeldung wird ausgegeben. Sind beide Motoren gestört, wird die Störungsmeldung gemäß Kap. 10.2.4 "Zwillingspumpe" aktiviert.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung in Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1214</td>
<td>[Pumpe 1A] Überlast</td>
<td>Nicht dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>1215</td>
<td>[Pumpe 1B] Überlast</td>
<td>Nicht dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>1224</td>
<td>[Pumpe 2A] Überlast</td>
<td>Nicht dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>1225</td>
<td>[Pumpe 2B] Überlast</td>
<td>Nicht dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>1234</td>
<td>[Pumpe 3A] Überlast</td>
<td>Nicht dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>1235</td>
<td>[Pumpe 3B] Überlast</td>
<td>Nicht dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>1244</td>
<td>[Pumpe 4A] Überlast</td>
<td>Nicht dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>1245</td>
<td>[Pumpe 4B] Überlast</td>
<td>Nicht dringende Meldung; muss quittiert werden</td>
</tr>
</tbody>
</table>

10.2.8 Vorbefehl

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorbefehl-Einlaufzeit</td>
<td>00.00…59.55 m:s</td>
<td>00.30 m:s</td>
</tr>
<tr>
<td>Vorbefehl-Auslaufzeit</td>
<td>00.00…59.55 m:s</td>
<td>00.30 m:s</td>
</tr>
</tbody>
</table>

Funktionsdiagramm

Startvorgabe: Ein Aus

Pumpe: 1 0

Vorbefehl: Ein Aus

DlyOn = Einschaltverzögerung
DlyOff = Ausschaltverzögerung
PcmdRnup = Vorbefehl-Einlaufzeit
PcmdRndw = Vorbefehl-Auslaufzeit

10.2.9 Vorbefehl-Rückmeldung

Wenn innerhalb der eingestellten Vorbefehl-Einlaufzeit keine Vorbefehl-Rückmeldung erfolgt, wird eine Störungsmeldung ausgegeben und die Pumpe nicht gestartet. Der Vorbefehl fällt ab nach Ablauf der Vorbefehl-Auslaufzeit.

Hinweis

Die Verwendung der Vorbefehl-Rückmeldung ist nur in Kombination mit dem konfigurierten Vorbefehl sinnvoll.
10.2.10 Start- und Stoppvorgaben

Für jeden Pumpenblock können je zwei Eingänge als Start- und Stoppvorgabe konfiguriert werden.

Es kann z. B. folgende Funktion realisiert werden: Steuerschalter auf dem Tableau, der direkt auf die Pumpen wirkt. Es kann für jede Pumpe ein separater Steuerschalter realisiert werden.

Soll bei ausgeschalteter Pumpe auch die Regelung ausschalten, dann kann der gleiche Eingang für eine universelle Störungsmeldung verwendet werden, der einen Anlagenstopp bewirkt (z. B. Konfiguration der Störungsmeldung: Nicht dringende Meldung, ohne Quittierung, mit Anlagenstopp, Text Handbetrieb).

Konfiguration

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1218</td>
<td>[Pumpe 1] Vorbefehl k. Rückmeldung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1228</td>
<td>[Pumpe 2] Vorbefehl k. Rückmeldung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1238</td>
<td>[Pumpe 3] Vorbefehl k. Rückmeldung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>1248</td>
<td>[Pumpe 4] Vorbefehl k. Rückmeldung</td>
<td>Dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
</tbody>
</table>

Hinweis

Stoppvorgaben haben größere Priorität als Startvorgaben (siehe auch Kapitel 10.2.16 "Prioritäten").

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Startwert 1] Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Startwert 1] Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Startwert 2] Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Startwert 2] Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Stoppwert 1] Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Stoppwert 1] Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Stoppwert 2] Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Stoppwert 2] Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
</tbody>
</table>

10.2.11 "Ein" nach Aussentemperatur

Damit z. B. wasserführende Leitungen nicht einfrieren, können die Pumpen bei tiefen Aussentemperaturen permanent betrieben werden.

Hinweis

Diese Funktionalität steht für Einfachpumpen und Zwillingspumpen zur Verfügung. Damit die Funktion aktiviert werden kann, muss die Aussentemperatur verfügbar sein (siehe Kapitel 8.4 "Aussentemperatur"). Diese Funktion kann deaktiviert werden, indem in der Bedienzeile "Aussentemp'bedingt Ein" "----" gesetzt wird.

Sinkt die Aussentemperatur unter den eingestellten Grenzwert, so schaltet der Regler den Motor der Umwälzpumpe ein. Ausgeschaltet wird die Pumpe, wenn die Aussentemperatur um 2°K über den Grenzwert angestiegen ist.

Beim Zwillingspumpenbetrieb schaltet der Motor mit der momentanen Laufpriorität ein.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aussentemp'bedingt Ein</td>
<td>----, −50°...+250 °C</td>
<td>----</td>
</tr>
</tbody>
</table>

Hinweis

Ist die Funktion aktiviert und liegt ein Aussentemperatur-Fühlerfehler vor, so wird die Pumpe permanent eingeschaltet.

10.2.12 Frostbedingt Ein

Bei der Pumpe kann eingestellt werden, ob das Maximum aller Frostfunktionen auf die Pumpe wirken soll. Dazu ist in der Bedienzeile "Frostbedingt Ein" Ja einzustellen.

Diese Funktion kann für Pumpen verwendet werden, die die Information Frost berücksichtigen sollen, aber nicht zu einer Sequenz eines Reglers konfiguriert worden sind.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frostbedingt Ein</td>
<td>Ja, Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>
10.2.13 Verhalten im Fall einer Pumpenstörung bei tiefen Aussentemperaturen

Soll die Anlage beim Anliegen einer Pumpenstörung und bei gleichzeitig tiefen Aussentemperaturen ausgeschaltet werden, jedoch bei höheren Aussentemperaturen trotzdem weiterlaufen, obwohl die betroffene Pumpe störungsbedingt ausser Betrieb ist, dann kann das mit dem Einstellparameter "(Störung) Anlagenstopp TA <" eingestellt werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Störung) Anlagenstopp TA <</td>
<td>-50...+250°C</td>
<td>----</td>
</tr>
</tbody>
</table>

Diese Einstellung wirkt nur bei Pumpenansteuerung "Lastbedingt Ein".

10.2.14 Pumpenkick

Gegen das Festsitzen der Pumpen während längeren Ausschaltphasen (z. B. Heizgruppe im Sommer) kann je Pumpenblock ein periodischer Pumpenkick aktiviert werden. Bei aktiviertem Pumpenkick schalten die Pumpen unabhängig von allen anderen Funktionen und Einstellungen wöchentlich für 30 Sekunden ein.

Der Pumpenkick wird aktiviert, indem bei der Einstellung Pumpenkick ein "Ja" gesetzt wird. Wird ein "Nein" gesetzt, wird kein Pumpenkick ausgeführt.

Zusätzlich kann ein Kicktag und eine Kickzeit eingestellt werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumpenkick</td>
<td>Ja, Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Kicktag</td>
<td>Montag, Dienstag, Mittwoch, Donnerstag, Freitag, Samstag, Sonntag</td>
<td>Montag</td>
</tr>
<tr>
<td>Kickzeit</td>
<td>00:00...23:59 h. m</td>
<td>10:00 h.m</td>
</tr>
</tbody>
</table>
10.2.15 Funktionskontrolle / Verdrahtungstest

Der aktuelle Zustand der Pumpe wird am Bediengerät angezeigt.

Hauptmenü > Einstellungen > Aggregate > Pumpe 1…4

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorbefehl Pumpe A</td>
<td>Anzeige des aktuellen Zustandes Pumpe 1:</td>
</tr>
<tr>
<td>Pumpe B</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Vorbefehl Pumpe A</td>
<td>Anzeige des aktuellen Zustandes Pumpe 2:</td>
</tr>
<tr>
<td>Pumpe B</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Vorbefehl Pumpe A</td>
<td>Anzeige des aktuellen Zustandes Pumpe 3:</td>
</tr>
<tr>
<td>Pumpe B</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Vorbefehl Pumpe A</td>
<td>Anzeige des aktuellen Zustandes Pumpe 4:</td>
</tr>
<tr>
<td>Pumpe B</td>
<td>Aus, Ein</td>
</tr>
</tbody>
</table>

Während des Verdrahtungstests können die Pumpen über den Steuerschalter direkt ein- oder ausgeschaltet werden.

Hauptmenü > Inbetriebnahme > Verdrahtungstest > Ausgänge >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumpe 1A / Pumpe 1B</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Pumpe 2A / Pumpe 2B</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Pumpe 3A / Pumpe 3B</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Pumpe 4A / Pumpe 4B</td>
<td>Aus, Ein</td>
</tr>
</tbody>
</table>

10.2.16 Prioritäten

Für den Betrieb der Pumpen gelten folgende Prioritäten:
1. EIN/AUS während des Verdrahtungstests
2. AUS durch Pumpenüberwachung (Strömungsmeldung, Überlastmeldung)
3. AUS durch Sperrzeit bei der Laufprioritätumschaltung (bei Zwillingspumpen)
4. EIN durch Frostschutz (lastbedingt EIN nach Wärmesequenz)
5. AUS durch Meldungen mit Anlagenstopp (nur für Pumpen, die direkt von der Betriebsart eingeschaltet werden)
6. EIN durch Ausschaltverzögerung
7. AUS durch Stoppvorgaben (1+2)
8. EIN durch Startvorgaben (1+2)
9. EIN nach Aussentemperatur
10. EIN durch Pumpenkick
11. Lastbedingt Ein
12. Vorgabe im Normalbetrieb (siehe Kapitel 10.2.2 "Betriebsart", für Pumpen, die direkt von der Betriebsart eingeschaltet werden)
10.2.17 Zuordnung von Texten

Die Texte für die Motoren können über die Bedienung angepasst werden. Sie werden bei der entsprechenden Bedienzeile und im Menü angezeigt.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Einstellungen > oder</td>
</tr>
<tr>
<td>Hauptmenü > Einstellungen > Aggregate > Pumpe 1...4 ></td>
</tr>
</tbody>
</table>

Bedienzeile | **Bereich** | **Werkzeinstellung** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumpe n</td>
<td>max. 20 Zeichen</td>
<td>Pumpe n</td>
</tr>
</tbody>
</table>

Alle Pumpenstörungen besitzen einstellbare Alarmtexte:

Einstellwerte
| Hauptmenü > Inbetriebnahme > Einstellungen > oder |
| Hauptmenü > Einstellungen > Aggregate > Pumpe 1...4 > |

Bedienzeile | **Bereich** | **Werkzeinstellung** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Pumpe 1] Störung</td>
<td>max. 20 Zeichen</td>
<td>[Pumpe 1] Störung</td>
</tr>
<tr>
<td>[Pumpe 1] Überlast</td>
<td>max. 20 Zeichen</td>
<td>[Pumpe 1] Überlast</td>
</tr>
<tr>
<td>[Pumpe 1] keine Strömung</td>
<td>max. 20 Zeichen</td>
<td>[Pumpe 1] keine Strömung</td>
</tr>
<tr>
<td>[Pumpe 1A] Überlast</td>
<td>max. 20 Zeichen</td>
<td>[Pumpe 1A] Überlast</td>
</tr>
<tr>
<td>[Pumpe 1B] Überlast</td>
<td>max. 20 Zeichen</td>
<td>[Pumpe 1B] Überlast</td>
</tr>
<tr>
<td>[Pumpe 1A] keine Strömung</td>
<td>max. 20 Zeichen</td>
<td>[Pumpe 1A] keine Strömung</td>
</tr>
<tr>
<td>[Pumpe 1B] keine Strömung</td>
<td>max. 20 Zeichen</td>
<td>[Pumpe 1B] keine Strömung</td>
</tr>
</tbody>
</table>

10.2.18 Betriebsstunden

Für jeden Pumpenausgang werden die Betriebsstunden erfasst. Der Zähler zählt maximal bis 99'999 Stunden, danach beginnt der Zähler wieder bei 0.

Anzeigewerte
| Hauptmenü > Aggregate > Pumpe 1...4 > |

Bedienzeile | **Bereich** |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsstunden Pumpe A</td>
<td>0...99'999 h</td>
</tr>
<tr>
<td>Betriebsstunden Pumpe B</td>
<td>0...99'999 h</td>
</tr>
</tbody>
</table>

In der Passwortebene kann der entsprechende Zählerstand angepasst werden und so z. B. auch auf 0 zurückgesetzt werden.

Einstellwerte
| Hauptmenü > Einstellungen > Aggregate > Pumpe 1...4 > |

Bedienzeile | **Bereich** | **Werkzeinstellung** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsstunden Pumpe A</td>
<td>0...99'999 h</td>
<td>0</td>
</tr>
<tr>
<td>Betriebsstunden Pumpe B</td>
<td>0...99'999 h</td>
<td>0</td>
</tr>
</tbody>
</table>
10.3 Stetiger Ausgang

Diese Funktion hat die Aufgabe, ein stetiges Ausgangssignal DC 0...10 V für einen stetigen Antrieb aus dem entsprechenden Eingangssignal zu erzeugen.

Hinweis
Der stetige Ausgang ist nicht geeignet, wenn ein Elektro-Lufterwärmer mit einem Stromventil angesteuert werden soll. Dafür geeignet ist die Funktion Stufenschalter, wo ein Relais als Einschalter für den Elektro-Lufterwärmer, ein stetiges Ausgangssignal DC 0...10 V und ein Eingang als Strömungsüberwachung zur Freigabe konfiguriert werden können.

10.3.1 Aktivieren des Blocks

Um die Funktion "Stetiger Ausgang" zu aktivieren, muss der Funktion zuerst ein Ausgang zugeordnet werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Stetige Ausgänge > Stetiger Ausgang A...D >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stetiger Ausgang A</td>
<td>---, N.Y1, N.Y2, ... / Aktivieren des stetigen Ausgangs</td>
</tr>
<tr>
<td>Stetiger Ausgang D</td>
<td></td>
</tr>
</tbody>
</table>

Es steht folgende Anzahl Blöcke "Stetiger Ausgang" pro Universalreglertyp zur Verfügung:
- RMU710B: max. 2 Blöcke
- RMU720B: max. 3 Blöcke
- RMU730B: max. 4 Blöcke

10.3.2 Ausgang-Invertierung

Jeder Ausgang kann invertiert werden.

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
Hauptmenü > Einstellungen > Aggregate > Stetiger Ausgang A...D >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invertierung</td>
<td>Nein, Ja</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Es bedeuten:
- Nein: 0...100 % Last = 0...100 % Ausgang
- Ja: 0...100 % Last = 100...0 % Ausgang

Für die Sequenzen bedeutet dies:
- Nein: hhh _ cc: _ _ / / /
- Ja: hhh _ cc: // _ _
10.3.3 Begrenzungen

Der stetige Ausgang (Y) kann oben und unten begrenzt werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellsignal minimal</td>
<td>0 % ... Stellsignal maximal</td>
<td>0 %</td>
</tr>
<tr>
<td>Stellsignal maximal</td>
<td>Stellsignal minimal ... 100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Der 0...100 % Ausgang entspricht "Stellsignal minimal" (Ymin) ... "Stellsignal maximal" (Ymax).

Funktionsdiagramm

Hiermit kann der Ausgang z. B. passend zu einem Magnetventil mit einem Eingang DC 5...7,5 V parametriert werden.

Wird der stetige Ausgang von mehr als einem internen Sequenzregler (siehe Kap. 15.1.1 "Zuordnung der Aggregate zu den Sequenzen") angesteuert, so gilt das grösste Signal (Maximalauswahl).

10.3.4 Startvorgabe

- Der stetige Ausgang kann über ein digitales Signal aktiviert werden.
- Das Ausgangssignal wird unter Berücksichtigung der Begrenzung ausgegeben.
- Wird das Startsignal zurückgenommen, wird am Ausgang 0 V ausgegeben bzw. 10 V bei Invertierung.
- Es wird eine Maximalauswahl getroffen.
- Ist keine Startvorgabe konfiguriert, ist der Ausgang immer aktiv.
10.3.5 Zuordnung von Texten

Jedem stetigen Ausgang kann ein Text zugeordnet werden.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
<td>Bereich</td>
</tr>
<tr>
<td>Stetiger Ausgang A</td>
<td>max. 20 Zeichen</td>
</tr>
</tbody>
</table>

10.3.6 Funktionskontrolle / Verdrahtungstest

Der aktuelle Zustand des stetigen Ausgangs x wird am Bediengerät angezeigt.

<table>
<thead>
<tr>
<th>Anzeigewerte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
<td>Bemerkung</td>
</tr>
<tr>
<td>Stetiger Ausgang A</td>
<td>0...100 %</td>
</tr>
</tbody>
</table>

Während des Verdrahtungstests kann der stetige Ausgang über den Steuerschalter direkt gesteuert werden.

<table>
<thead>
<tr>
<th>Verdrahtungstest</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
<td>Bemerkung</td>
</tr>
<tr>
<td>Stetiger Ausgang A</td>
<td>----, 0...100 %</td>
</tr>
</tbody>
</table>

10.4 Wärmerückgewinner (Grundtyp A, P)

Diese Funktion hat die Aufgabe, einen Wärmerückgewinner anzusteuern.

<table>
<thead>
<tr>
<th>Konfiguration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
<td>Einstellbare Werte / Bemerkung</td>
</tr>
<tr>
<td>Ausgang stetig</td>
<td>---, N.Y1, N.Y2, ... / Aktivieren der Wärmerückgewinnung</td>
</tr>
<tr>
<td>Ausgang Relais</td>
<td>---, N.Q1, N.Q2, ...</td>
</tr>
</tbody>
</table>

10.4.1 Aktivieren des Blocks

Um die Funktion "Wärmerückgewinner" zu aktivieren, muss der Funktion zuerst ein stetiger Ausgang zugeordnet werden. Wird noch ein schaltender Ausgang benötigt, so kann der "Ausgang Relais" auf einen freien Relaisausgang konfiguriert werden.
10.4.2 Begrenzungen

Der stetige Ausgang (Y) kann oben und unten begrenzt werden. 0...100 % Ausgang entspricht dann "Stellsignal minimal" (Ymin) ... "Stellsignal maximal" (Ymax).

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellsignal minimal</td>
<td>0...100 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Stellsignal maximal</td>
<td>0...100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Der 0...100 % Ausgang entspricht "Stellsignal minimal" (Ymin) ... "Stellsignal maximal" (Ymax).

10.4.3 Maximum-Economy-Umschaltung (MEU)

Diese Funktion dient dazu, bei Klimaanlagen die Wärmerückgewinnung optimal bezüglich Betriebskosten zu steuern.

Um die Maximum-Economy-Umschaltung (MEU) des Wärmerückgewinners zu aktivieren, müssen die entsprechenden Eingänge zugeordnet werden.

Konfiguration

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEU-Eingang 1</td>
<td>---, N.X1, N.X2, ... Aussentemperatur, [Logik 1] digital, [Logik 2] digital (nur °C, kJ/kg, 100, 1000, Digital)</td>
</tr>
<tr>
<td>MEU-Eingang 2</td>
<td>---, N.X1, N.X2, ... Raumtemperatur, Ablufttemperatur (nur °C, kJ/kg, 100, 1000)</td>
</tr>
</tbody>
</table>

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEU-Grenzwert †</td>
<td></td>
<td>3 K, 20 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 kJ/kg, 40 kJ/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3, 40 ---</td>
</tr>
</tbody>
</table>

†Die Bedienzeile MEU-Grenzwert wird bei der Umschaltung auf einen einstellbaren Wert als absoluter Wert verwendet, oder bei der Umschaltung aufgrund einer Differenz von 2 Messgrößen als relativer Wert. Er dient in diesem Fall zur Berücksichtigung von Wärmequellen im Abluftkanal (z.B. Abwärme des Ventilators).
Umschaltmöglichkeiten

Folgende 3 Umschaltmöglichkeiten stehen zur Verfügung:

1. Umschaltung von extern mit einem digitalen Signal
 Dazu muss dem "MEU-Eingang 1" ein digitaler Eingang zugeordnet werden.
 Dabei gilt:
 Ruhestellung (tiefe Aussentemperatur) = Keine Invertierung
 Arbeitsstellung (hohe Aussentemperatur) = Invertierung

 Ansteuerung durch Heizsequenzen (S1, S2, S3)

 Ansteuerung durch Kühlsequenzen (S4, S5)

2. Umschaltung bei einem einstellbaren Wert
 Dazu muss dem "MEU-Eingang 1" ein analoger Eingang zugeordnet werden
 (Typisch: Aussentemperatur oder Enthalpiedifferenz Aussenluft – Abluft).
 Wird der eingestellte MEU-Grenzwert überschritten, so wird der Ausgang invertiert.

 Ansteuerung durch Heizsequenzen (S1, S2, S3)

 Ansteuerung durch Kühlsequenzen (S4, S5)
3. Umschaltung bei einer einstellbaren Differenz zweier Messwerte

Dazu muss dem "MEU-Eingang 1" und dem "MEU-Eingang 2" je ein analoger Eingang zugeordnet werden (Typisch: MEU-Eingang 1 = Aussentemperatur, MEU-Eingang 2 = Ablufttemperatur).

Ist wie in diesem Beispiel die Aussentemperatur grösser als die Ablufttemperatur + MEU-Grenzwert, so wird der Ausgang invertiert. Die Hysterese ist fix 1 K.

Ansteuerung durch Heizsequenzen (S1, S2, S3)

Ansteuerung durch Kühlsequenzen (S4, S5)
10.4.4 Wirkungsgrad-Überwachung des WRG-Systems

Um diese Funktion zu aktivieren, müssen die entsprechenden zwei Eingänge zugeordnet werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Wärmerückgewinner

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirkungsgradmessung Eingang 1</td>
<td>---, N.X1, N.X2,... , Raumtemperatur, Ablufttemperatur (nur °C, 000.0, 0000)</td>
</tr>
<tr>
<td>Wirkungsgradmessung Eingang 2</td>
<td>---, N.X1, N.X2,... (nur °C, 000.0, 0000)</td>
</tr>
</tbody>
</table>

Erklärung

Wirkungsgradmessung Eingang 1: Abluft- oder Raumtemperaturfühler
Wirkungsgradmessung Eingang 2: Zusatzfühler
Zusätzlich muss die Aussentemperatur verfügbar sein (siehe Kapitel 8.4 "Aussentemperatur").

Wirkungsweise

Aufgrund von drei gemessenen Temperaturgrößen wird der Wirkungsgrad der Wärmerückgewinnung ermittelt. Der errechnete Wert kann am Bediengerät abgelesen werden. Der errechnete Wert kann am Bediengerät abgelesen werden. Liegt der Wirkungsgrad unterhalb der einstellbaren Störungsmeldeschwelle (Wirkungsgrad-Grenzwert), so wird eine Meldung generiert.

Störungsmeldungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3111</td>
<td>WRG-Wirkungsgradabweichung</td>
<td>Nicht dringende Meldung ohne Anlagestopp; muss quittiert und entriegelt werden</td>
</tr>
</tbody>
</table>

Der Wirkungsgrad kann u. a. durch defekte, verschmutzte oder falsch angeschlossene Wärmerückgewinnung reduziert sein.

Hinweis

Der gemessene Wirkungsgrad dient als Indikator und nicht zur Bestimmung der absoluten Güte. Er gibt lediglich einen Hinweis auf die Größenordnung sowie die Veränderung über die Betriebsdauer des Wärmerückgewinners. Die geförderte Luftmenge hat einen grossen Einfluss auf den gemessenen Wirkungsgrad. Bei drehzahlgeregelter Ventilatoren wird diese Messung entsprechend ungenau, da die effektiv geförderte Luftmenge nicht ermittelt werden kann!

Anzeige des Wirkungsgrads

In der Zeit, in der kein gültiger Wirkungsgrad zur Verfügung steht (z. B. eine der Bedingungen ist nicht erfüllt, es steht kein stabiler Wirkungsgrad zur Verfügung, weil das System nicht im eingeschwungenen Zustand ist, usw. ...), erscheint auf der Anzeige der Wert "-----".

Kann der Wirkungsgrad nicht berechnet werden, werden auch keine Störungsmeldungen generiert.

Wahl der Messanordnung

Es kann zwischen zwei Messanordnungen für die Führer gewählt werden:

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
Hauptmenü > Einstellungen > Aggregate > Wärmerückgewinner

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messanordnung</td>
<td>Zuluft, Fortluft</td>
<td>Fortluft</td>
</tr>
</tbody>
</table>
Hinweis
Der Abstand des Fühlers BX zum Lufterwärmer muss wegen der Wärmestrahlung mindestens 150 mm betragen.

Bedingungen
Die folgenden Bedingungen müssen erfüllt werden, damit ein Wirkungsgrad ermittelt werden kann und entsprechend eine Wartungsmeldung ausgegeben werden kann:
- Differenz zwischen Raum- resp. Ablufttemperatur und Aussentemperatur > 5 Kelvin
- Wärmerückgewinner-Ausgang = 100 % Last
- Ventilatoren sind eingeschaltet
- Aussentemperatur ist tiefer als der eingestellte Schwellwert
Die folgenden Parameter können noch zusätzlich eingestellt werden:

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder Hauptmenü > Einstellungen > Aggregate > Wärmerückgewinner >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Störungsmeldeverzögerung</td>
<td>00.00...06.00 h.m</td>
<td>Zeit, in welcher der Wirkungsgrad unterhalb der eingestellten Schwelle liegen muss, bevor eine Störungsmeldung generiert wird</td>
</tr>
<tr>
<td>TA-Grenzwert-Wirkungsgrad</td>
<td>−50...+150 °C</td>
<td>Bei hohen Aussentemperaturen wird die Wirkungsgrad-Überwachung gesperrt</td>
</tr>
<tr>
<td>Ventilatoreinfluss-Korrektur</td>
<td>0.0...5.0 K</td>
<td>Die Temperaturerhöhung aufgrund der Ventilatorleistung kann hier eingestellt werden</td>
</tr>
<tr>
<td>Wirkungsgrad-Grenzwert</td>
<td>0...100 %</td>
<td>Universeller Störungstext, wenn der Wirkungsgradgrenzwert überschritten wird</td>
</tr>
<tr>
<td>WRG-Wirkungsgradabweichung</td>
<td>Max. 20 Zeichen Text</td>
<td>Universeller Störungstext, wenn der Wirkungsgradgrenzwert überschritten wird</td>
</tr>
</tbody>
</table>

10.4.5 Fixe Vorgabe während des Kühlbetriebs

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftkühlerventil</td>
<td>---, Stetiger Ausgang A, ...B, ...C, ...D, Stufenschalter 1, ...2, ...3, ...4, ...5</td>
</tr>
</tbody>
</table>

Bei geöffnetem Kühlventil wird das Ausgangssignal der Wärmerückgewinnung so gestellt, dass die Luft nach der Wärmerückgewinnung eine möglichst tiefe Temperatur aufweist.
Der WRG-Ausgang kann invertiert werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invertierung</td>
<td>Nein, Ja</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Es bedeuten:
- Nein: 0...100 % Last = 0...100 % Ausgang
- Ja: 0...100 % Last = 100...0 % Ausgang

10.4.6 Motorenkick

Gegen das Verstauben und Festsitzen der WRG während längeren Ausschaltphasen kann ein periodischer Motorenkick aktivierte werden.

Bei aktiviertem Motorenkick schaltet die WRG unabhängig von allen anderen Funktionen und Einstellungen wöchentlich für 30 Sekunden ein.

Der Motorenkick wird aktiviert, indem bei der Einstellung "Motorenkick" ein "Ja" gesetzt wird. Wird ein "Nein" gesetzt, wird kein Motorenkick ausgeführt.

Zusätzlich kann ein Kicktag und eine Kickzeit eingestellt werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorenkick</td>
<td>Ja, Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Kicktag</td>
<td>Mo, Di, Mi, Do, Fr, SA, So</td>
<td>Mo</td>
</tr>
<tr>
<td>Kickzeit</td>
<td>00:00...23:59 h. m</td>
<td>10:00 h.m</td>
</tr>
</tbody>
</table>
10.4.7 Funktionskontrolle / Verdrahtungstest

Der aktuelle Zustand des Wärmerückgewinnungssystems wird am Bediengerät angezeigt.

Anzeigewerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgang stetig</td>
<td>0...100 %</td>
</tr>
<tr>
<td>Ausgang Relais</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Wirkungsgrad Wärmerückgewinner</td>
<td>----. 0...100 %</td>
</tr>
</tbody>
</table>

Während des Verdrahtungstests kann der stetige Ausgang direkt gesteuert werden.

Verdrahtungstest

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmerückgewinner-Ausgang</td>
<td>----, 0...100 %</td>
</tr>
</tbody>
</table>

10.4.8 Fehlerbehandlung

Fehler im Betrieb
Wenn das Inbetriebnahmenmenü verlassen wird, wird überprüft, welche Fühler angeschlossen sind. Fehlt später einer der zu diesem Zeitpunkt angeschlossenen Fühler, wird eine Störungsmeldung "[...X...] Fühlerfehler" abgesetzt.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>101...</td>
<td>[N,X1] Fühlerfehler, ..</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

Kann der Wirkungsgrad nicht berechnet werden, wird bei der Anzeige "Wirkungsgrad" "----" angezeigt.

Fehlen die Fühler für die Maximum-Economy-Umschaltung, findet die Umschaltung nicht statt.

Konfigurationsfehler
Hat der "MEU-Eingang 2" nicht die gleiche Einheit wie der "MEU-Eingang 1", so wird für die Umschaltung nur der erste Eingang berücksichtigt. Wurde kein oder nur der "MEU-Eingang 2" konfiguriert, so ist die Maximum-Economy-Umschaltung deaktiviert.

Wurden für die Wirkungsgradberechnung nicht zwei Temperaturfühler konfiguriert, so wird der Wirkungsgrad nicht berechnet und es wird keine Störungsmeldung abgesetzt.
10.5 Mischluftklappe (Grundtyp A, P)

Diese Funktion hat die Aufgabe, eine Aussenluftklappe mit einem Signal DC 0...10 V anzusteuern.

10.5.1 Aktivieren des Blocks

Um die Funktion Mischluftklappe zu aktivieren, muss der Funktion zuerst ein Ausgang zugeordnet werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Mischluftklappe >

Bedienzeile Einstellbare Werte / Bemerkung
Ausgang ---, N.Y1, N.Y2, ... / Aktivieren der Mischluftklappe

10.5.2 Wirksinn

Der Wirksinn ist fix invers: 0 bis 100 % Last = Oberer Grenzwert bis "Stellsignal minimal".

Anwendungsbeispiel
10.5.3 Begrenzungen

Der stetige Ausgang (Y) kann oben und unten begrenzt werden. 0...100 % Ausgang entspricht dann dem Bereich zwischen dem "Stellsignal minimal" (Ymin) und dem Einstellwert "[Max.-Begrenzung] End Stellung" (Ymax).

\[Y_{\text{max}} \quad Y_{\text{min}} \]

\[0 \% \quad 0 \quad 10 \quad 100 \quad 0 \quad 10 \quad 100 \quad Qs \]

Qs = Lastanforderung vom Sequenzregler

Das "Stellsignal minimal" (Ymin) wird fix eingestellt. Der obere Grenzwert kann je nach Aussenstemperatur geschoben werden.

\[\text{Einstellwerte} \]

\[\text{Hauptmenü} > \text{Inbetriebnahme} > \text{Einstellungen} > \ldots \ \text{oder} \ \text{Hauptmenü} > \text{Einstellungen} > \text{Aggregate} > \text{Mischluftklappe} > \]

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellsignal minimal</td>
<td>0...100 %</td>
<td>20 %</td>
</tr>
<tr>
<td>[Max.-Begrenzung] Start TA</td>
<td>-50...50 °C</td>
<td>15 °C</td>
</tr>
<tr>
<td>[Max.-Begrenzung] End TA</td>
<td>-50...50 °C</td>
<td>-5 °C</td>
</tr>
<tr>
<td>[Max.-Begrenzung] End Stellung</td>
<td>0...100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

\[\text{Hinweis} \]

Während der Entrauchung resp. der Nachtkühlung sind die Begrenzungen wirkungslos, das Ausgangssignal ist immer DC 10 V.
10.5.4 Fixe Klappenstellung

Bei ausgeschalteter Anlage ist das Signal immer DC 0 V. Wird die Mischluftklappe von keinem Regler angesteuert, so wird bei eingeschalteter Anlage nach abgelaufener Anfahrschaltung am Klappenausgang fix das "Stellsignal minimal" ausgegeben:

![Funktionsdiagramm](image)

Ist der Umluftbetrieb aktiv (siehe Kapitel 10.1 "Ventilator (Grundtyp A, P)") wird die Aussenluftklappe geschlossen (DC 0 V).

Das Ausgangssignal für die Mischluftklappen darf nicht für Aussenluftklappen ohne Umluftklappensteuerung verwendet werden, weil die Aussenluftklappen geschlossen sein können, auch wenn die Ventilatoren eingeschaltet sind.

10.5.5 Mischlufttemperaturregelung

Durch den Anschluss der Mischlufttemperatur an den Luftklappenblock wird der Mischlufttemperaturregler aktiviert. Mit Hilfe der Luftklappen wird die Mischlufttemperatur auf einen einstellbaren Sollwert geregelt.

![Konfiguration](image)

### Bedienzeile	Einstellbare Werte / Bemerkung
Mischlufttemperatur | ---, N.X1, N.X2, ...

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mischlufttemperatur-Sollwert</td>
<td>-50°C ... 250 °C</td>
<td>12°C</td>
</tr>
<tr>
<td>P-Band Xp</td>
<td>0.0 ... 500 K</td>
<td>10 K</td>
</tr>
<tr>
<td>Nachstellzeit Tn</td>
<td>00.00...59.55 m:s</td>
<td>02.00 m:s</td>
</tr>
</tbody>
</table>
10.5.6 Prioritäten

Für die Mischlufttemperaturregelung gelten folgende Prioritäten:
1. Anfahrtschaltung
2. MEU-Umschaltung
3. Signal des Mischlufttemperaturreglers
4. Signal des Luftqualitätsreglers
5. Signal des Sequenzreglers

10.5.7 Fehlerbehandlung

Fehler im Betrieb
Wenn das Inbetriebnahmemenü verlassen wird, wird überprüft, ob der Mischlufttemperatutfühler angeschlossen ist. Ist zu diesem Zeitpunkt der Fühler nicht angeschlossen, so wird die Funktion "Mischlufttemperaturregelung" inaktiv gesetzt. Ist der Fühler zu diesem Zeitpunkt angeschlossen und fehlt er später, wird eine Störungsmeldung "Fühlerfehler X..." abgesetzt und die Funktion "Mischlufttemperaturregelung" wird inaktiv gesetzt.

10.5.8 Maximum-Economy-Umschaltung (MEU)

Um die Maximum-Economy-Umschaltung (MEU) zu aktivieren, müssen die entsprechenden Eingänge zugeordnet werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Mischluftklappe > Bedienzeile

<table>
<thead>
<tr>
<th>MEU-Eingang 1</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>---, N.X1, N.X2, ..., Aussentemperatur, [Logik 1] digital, [Logik 2] digital (nur °C, kJ/kg, 100, 1000, Digital)</td>
<td></td>
</tr>
<tr>
<td>MEU-Eingang 2</td>
<td></td>
</tr>
<tr>
<td>--, N.X1, N.X2,..., N.X2 , Raumtemperatur, Ablufttemperatur (nur °C, kJ/kg, 100, 1000)</td>
<td></td>
</tr>
</tbody>
</table>

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > Aggregat > Mischluftklappe > Bedienzeile

<table>
<thead>
<tr>
<th>MEU-Grenzwert(^1)</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 K, 20 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 kJ/kg, 40 kJ/kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 40 ---</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Die Bedienzeile MEU-Grenzwert wird bei der Umschaltung auf einen einstellbaren Wert als absoluter Wert verwendet, oder bei der Umschaltung aufgrund einer Differenz von 2 Messgrössen als relativer Wert. Er dient in diesem Fall zur Berücksichtigung von Wärmequellen im Abluftkanal (z.B. Abwärme des Ventilators)
Umschaltmöglichkeiten

Folgende 3 Umschaltmöglichkeiten stehen zur Verfügung:

1. **Umschaltung von extern mit einem digitalen Signal**

 Dazu muss dem "MEU-Eingang 1" ein digitaler Eingang zugeordnet werden.

 Dabei gilt:

 Ruhestellung (tiefe Aussentemperatur) = Keine Invertierung
 Arbeitsstellung (hohe Aussentemperaturen) = Invertierung

 Ansteuerung durch Heizsequenzen (S1, S2, S3)

 ![Diagramm für Heizsequenzen](image1)

 Ansteuerung durch Kühlsequenzen (S4, S5)

 ![Diagramm für Kühlsequenzen](image2)

2. **Umschaltung bei einem einstellbaren Wert**

 Dazu muss dem "MEU-Eingang 1" ein analoger Eingang zugeordnet werden (Typisch: Aussentemperatur oder Enthalpydifferenz Aussenluft – Abluft).

 Wird der eingestellte MEU-Grenzwert überschritten, so wird der Ausgang invertiert.

 Ansteuerung durch Heizsequenzen (S1, S2, S3)

 ![Diagramm für Heizsequenzen](image3)

 Ansteuerung durch Kühlsequenzen (S4, S5)

 ![Diagramm für Kühlsequenzen](image4)
3. Umschaltung bei einer einstellbaren Differenz zweier Messwerte
Dazu muss dem "MEU-Eingang 1" und dem "MEU-Eingang 2" je ein analoger Eingang zugeordnet werden (Typisch: MEU-Eingang 1 = Aussentemperatur, MEU-Eingang 2 = Ablufttemperatur).

Ist wie im Beispiel mit Ansteuerung durch Heizsequenzen die Aussentemperatur grösser als die Ablufttemperatur + MEU-Grenzwert, so wird der Ausgang invertiert. Die Hysterese ist fix 1 K.

Ansteuerung durch Heizsequenzen (S1, S2, S3)

\[
\begin{align*}
\text{TA} & > (\text{TAbl} + \text{MEU Grenzwert}) \\
\text{TA} & < (\text{TAbl} + \text{Grenzwert} - \text{Hysterese})
\end{align*}
\]

10.5.9 Fixe Vorgabe während des Kühlbetriebs
Die Funktion entspricht exakt der Funktion wie im Kapitel 10.4 "Wärmerückgewinner (Grundtyp A, P)" beschrieben.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Mischluftklappe >

Bedieneleiste	Einstellbare Werte / Bemerkung
Luftkühlerventil | ---, Stetiger Ausgang A, ...B, ...C, ...D, Stufenschalter 1, ...2, ...3, ...4, ...5

10.5.10 Anfahrschaltung
Die Anfahrschaltung wird aktiviert, indem für die "Anfahrzeit" ein Wert > 0 eingegeben wird.

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
Hauptmenü > Einstellungen > Aggregate > Mischluftklappe >

<table>
<thead>
<tr>
<th>Bedieneleiste</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfahrzeit</td>
<td>00.00...59.55 m:s</td>
<td>05.00 m:s</td>
</tr>
</tbody>
</table>

Ist die Aussentemperatur verfügbar, so ist die Anfahrschaltung nur bei Aussentemperaturen unter 15 °C aktiv. Bei Aussentemperaturen oberhalb 15 °C erfolgt ein Anlagestart ohne Anfahrschaltung. Ist keine Aussentemperatur verfügbar, wirkt die Anfahrschaltung immer, sofern eine Anfahrzeit > 00.00 eingegeben wird. Bei Anlagestartens, verursacht durch "Entrauchung" oder "Nachtkühlung" erfolgt keine Anfahrschaltung.
10.5.11 Funktionskontrolle / Verdrahtungstest

Der aktuelle Zustand der Mischluftklappe wird am Bediengerät angezeigt.

Anzeigewerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mischlufttemperatur Istwert</td>
<td>Anzeigewert für den Mischlufttemperatur-Istwert</td>
</tr>
<tr>
<td>Mischlufttemperatur Sollwert</td>
<td></td>
</tr>
<tr>
<td>Ausgang stetig</td>
<td>0...100 %</td>
</tr>
</tbody>
</table>

Während des Verdrahtungstests kann der stetige Ausgang über den Steuerschalter direkt gesteuert werden.

Verdrahtungstest

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mischluftklappen-Ausgang</td>
<td>----, 0...100 %</td>
</tr>
</tbody>
</table>

Hinweis

Während des Verdrahtungstests sind die Begrenzungen wirkungslos. Sie können nicht für die Einstellung der Mindestluftmengen bei der Inbetriebnahme verwendet werden.

10.5.12 Fehlerbehandlung

Fehler im Betrieb

Wenn das Menü "Inbetriebnahme" verlassen wird, wird überprüft, welche Fühler angeschlossen sind. Fehlt später einer der zu diesem Zeitpunkt angeschlossenen Fühler, wird eine Störungsmeldung "{...X...} Fühlerfehler" abgesetzt.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>[N.X1] Fühlerfehler</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

Störungsmeldungen

Fehlen die Fühler der MEU, findet die MEU nicht statt.

Fehlt die Aussentemperatur, so wird für den oberen Grenzwert fix der eingestellte Wert "[Max.-Begrenzung] End Stellung" verwendet.

Konfigurationsfehler

Hat der zweite MEU-Eingang nicht die gleiche Einheit wie der erste MEU-Eingang, so wird für die Umschaltung nur der erste Eingang berücksichtigt. Wurde kein oder nur der zweite Eingang konfiguriert, so ist die Umschaltung deaktiviert.
10.6 Linear/Binär-Stufenschalter (1..3)

Dieser Funktionsblock hat die Aufgabe, lastabhängig mehrstufige Aggregate oder mehrere Aggregate zu schalten. Die Stufenschalter können kaskadiert werden, um die Anzahl der verfügbaren Stufen zu erhöhen.

Der Stufenschalter kann konfiguriert werden als:

- **Linearer Stufenschalter**
 Schalten von gleich grossen Stufen oder Aggregaten mit gleichen Leistungen Führungs-/Folgesteuerung (Laufprioritätsumschaltung)
 oder

- **Binärer Stufenschalter**
 Schalten von binär gestuften Aggregaten. Pro Stufenschalter sind maximal 15 Stufen schaltbar.

Die Stufenschalter lassen sich von maximal 3 internen Sequenzregler (siehe Kapitel 15.1.1 "Zuordnung der Aggregate zu den Sequenzen") ansteuern, dabei gilt das grösste Signal (Maximalauswahl).

10.6.1 Aktivieren des Blocks

Der Linear/Binär-Stufenschalter wird durch die Zuweisung eines Ausgangs Qx auf die Stufe 1 oder durch die Zuweisung des stetigen Ausgangs auf einen Ausgang Y aktiviert.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration> Aggregate > Stufenschalter > Stufenschalter 1...3 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufe 1</td>
<td>---, N.Q1, N.Q2, ... (nur freie Ausgänge)</td>
</tr>
<tr>
<td>Stufe 2</td>
<td>---, N.Q1, N.Q2, ... (nur freie Ausgänge)</td>
</tr>
<tr>
<td>Stufe 3</td>
<td>---, N.Q1, N.Q2, ... (nur freie Ausgänge)</td>
</tr>
<tr>
<td>Stufe 4</td>
<td>---, N.Q1, N.Q2, ... (nur freie Ausgänge)</td>
</tr>
<tr>
<td>Stetiger Ausgang</td>
<td>---, N.Y1, N.Y2, ... (nur freie Ausgänge)</td>
</tr>
</tbody>
</table>

Über den Typ (Linear, Binär) wird eingestellt, nach welcher Charakteristik der Stufenschalter schaltet.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration> Aggregate > Stufenschalter > Stufenschalter 1...3 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
<td>Linear, Binär</td>
<td>Linear</td>
</tr>
</tbody>
</table>
10.6.2 Linearer Stufenschalter

Lastzuschaltung

Beim linearen Stufenschalter werden die Relais-Ausgänge mit gleichen Schritten zugeschaltet.

Die Lastzuschaltung findet nach folgendem Muster statt:

Schaltabstand, Beispiel mit 2 digitalen Ausgängen:

Abstand X ist gleich 100 % Last geteilt durch (Anzahl der Stufen +1)

Um ein zu schnelles Hochfahren zu verhindern, kann eine gemeinsame Anlaufverzögerungszeit eingegeben werden. Diese Verzögerung bewirkt, dass beim Hochfahren zwischen den Stufen immer diese Zeit abgewartet wird, bis die jeweils nächste Stufe einschalten kann.
Laufprioritätsumschaltung
Beim linearen Stufenschalter kann eine Prioritätsumschaltung der Ausgänge eingestellt werden. Die Prioritäten wechseln fix jede Woche (immer nach 7 x 24 = 168 Stunden).

Die Umschaltung findet folgendermassen statt (Beispiel mit 4 Stufen):

Woche 1: 1, 2, 3, 4
Woche 2: 2, 3, 4, 1
Woche 3: 3, 4, 1, 2
Woche 4: 4, 1, 2, 3
Woche 5: 1, 2, 3, 4
usw.

Hinweis
Die Prioritätsumschaltung wird bei einem Spannungsabfall zurückgesetzt.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anlaufverzögerung</td>
<td>00.00…10.00 m:s</td>
<td>00.00</td>
</tr>
<tr>
<td>Laufpriorität Umschaltung</td>
<td>Nein, Ja</td>
<td>Nein</td>
</tr>
</tbody>
</table>

10.6.3 Binärer Stufenschalter
Der binäre Stufenschalter schaltet mehrstufige Aggregate. Die Aggregate müssen nach der binären Lastaufteilung dimensioniert sein.

Beim binären Stufenschalter ist die Laufprioritätsumschaltung nicht möglich.

Lastzuschaltung
Beim binären Stufenschalter werden die digitalen Ausgänge mit folgenden Lastschritten auf die gesamte Schaltleistung des Aggregats aufgeteilt:

| 0Y+2 Q | 1.Q = 1/3 | 2.Q = 2/3 | 3 Lastschritte |
| 0Y+3 Q | 1.Q = 1/7 | 2.Q = 2/7 | 3.Q = 4/7 | 7 Lastschritte |

Wenn mit analogem Ausgang konfiguriert:

| 1Y+2 Q | Y = 1/4 | 1.Q = 1/4 | 2.Q = 2/4 | 4 Lastschritte |
| 1Y+3 Q | Y = 1/8 | 1.Q = 1/8 | 2.Q = 2/8 | 3.Q = 4/8 | 8 Lastschritte |
Die Lastaufteilung findet nach folgendem Muster statt:

Schaltabstand, Beispiel mit 2 digitalen Ausgängen (ohne und mit stetigem Ausgang):
10.6.4 Kaskadierung von Stufenschaltern

Zur Erhöhung der Stufenzahl können zwei oder drei Linear/Binär-Stufenschalter miteinander verbunden (kaskadiert) werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Stufenschalter >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinrichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+2 verbinden</td>
<td>Nein, Ja</td>
<td>Nein</td>
</tr>
<tr>
<td>2+3 verbinden</td>
<td>Nein, Ja</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Hinweise zur Konfiguration

- wenn 2 Linear/Binär-Stufenschalter miteinander verbunden (kaskadiert) werden, so sind die Ausgänge des Sequenzreglers nur auf den 1. Stufenschalter zu verbinden
- als stetiges Lastsignal ist der stetige Ausgang des 2. (bei 2) bzw. des 3. (bei 3) Stufenschalters zu konfigurieren
- der Typ beider Stufenschalter soll gleich sein: binär oder linear
- die Kaskadierung ist wirkunglos, wenn der 2. Stufenschalter nicht aktiviert ist
- bei der Konfiguration sollen keine Lücken gelassen werden; also Stufen 1,2 und 3 statt Stufen 1,3 und 4 verwenden
- werden 2 oder 3 Stufenschalter kaskadiert, so müssen die Einstellungen Sperrzeit, Nachlaufzeit, Anlaufverzögerung (nur linear), Laufprioritätsumschaltung (nur linear) und die externe Freigabe bei allen Stufenschaltern vorgenommen werden; die Einstellungen werden nicht weitergegeben
- die Anlaufverzögerung (nur linear) und die Laufprioritätsumschaltung (nur linear) wirken jeweils nur innerhalb eines Stufenschalters

Beispiel 1

Binärstufenschalter kaskadiert mit 256 Lastschritten:

![Diagramm](image.png)

Lastzuschaltung

Die grössten Lastschritte (S5 bis S8) des ersten Stufenschalters werden durch die kleineren Lastschritte (S1 bis S4) des zweiten Stufenschalters unterteilt.

<table>
<thead>
<tr>
<th>Stufenschalter 1: Grössere Lastschritte</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Q</td>
</tr>
<tr>
<td>S5 = 16/256</td>
</tr>
<tr>
<td>S6 = 32/256</td>
</tr>
<tr>
<td>S7 = 64/256</td>
</tr>
<tr>
<td>S8 = 128/256</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stufenschalter 2: Kleinere Lastschritte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Y+4 Q</td>
</tr>
<tr>
<td>Y = 0..1/256</td>
</tr>
<tr>
<td>S1 = 1/256</td>
</tr>
<tr>
<td>S2 = 2/256</td>
</tr>
<tr>
<td>S3 = 4/256</td>
</tr>
<tr>
<td>S4 = 8/256</td>
</tr>
</tbody>
</table>
Beispiel 2

Linearer Stufenschalter mit 8 Stufen:

Lastzuschaltung

Die Lastschritte werden linear auf die Anzahl konfigurierte Relaisausgänge verteilt, in diesem Beispiel bringt jede Laststufe 1/8 Leistung.
- Stufe 1 = Ausgang Stufe 1 des ersten Stufenschalters
- Stufe 8 = Ausgang Stufe 4 des zweiten Stufenschalters

10.6.5 Sperrzeit

Zusätzlich kann für die Relais-Ausgänge eine gemeinsame Sperrzeit eingegeben werden. Diese Zeit bewirkt, dass eine Stufe nach dem Ausschalten mindestens für die eingestellte Dauer ausgeschaltet bleibt.

Falls ein Relais-Ausgang gesperrt ist, bleiben bei Bedarf während dieser Zeit alle Relais mit kleinerer Leistung eingeschaltet, um einen grossen Leistungsabfall zu vermeiden.

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > oder
Hauptmenü > Einstellungen > Aggregate > Stufenschalter 1...3

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperrzeit</td>
<td>00.00…10.00 m:s</td>
<td>00.00</td>
</tr>
</tbody>
</table>

10.6.6 Ventilator-Nachlaufzeit

Für die Stufenschalter kann eine Nachlaufzeit eingegeben werden.

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > oder
Hauptmenü > Einstellungen > Aggregate > Stufenschalter 1...3

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator-Nachlaufzeit</td>
<td>00.00…59.55 m:s</td>
<td>00.00 m:s</td>
</tr>
</tbody>
</table>

Diese Nachlaufzeit bewirkt, dass die Ventilatoren (siehe Kapitel 10.1 "Ventilator (Grundtyp A, P") nach dem Ausschalten der letzten Schaltstufe für die eingestellte Zeit in Betrieb bleiben. D. h. die Nachlaufzeit ist nur aktiv, wenn der Stufenschalter mit einem Relais konfiguriert ist.
Bei Ventilatoren, die für Umlaubetrieb konfiguriert wurden, wirkt der Nachlauf nur auf den Zuluftventilator. Sollen die Pumpen auch nachlaufen, kann das durch Setzen einer Ausschaltverzögerung bei der Pumpe gelöst werden.

Anwendungsbeispiel

10.6.7 Externe Freigabe

Für jeden Stufenschalter kann ein Eingang als Freigabe konfiguriert werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Stufenschalter > Stufenschalter 1...3 >

Bedienzeile	Einstellbare Werte / Bemerkung
Freigabe extern | ---, N.X1, N.X2,... (digitale und analoge Eingänge)

Als Freigabe-Signal kann ein analoges Signal verwendet werden. Über die Einstellwerte "Freigabe Schaltwert Ein" und "Freigabe Schaltwert Aus" können die Schwellwerte gesetzt werden, wenn der entsprechende Stufenschalter freigegeben sein soll.

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
Hauptmenü > Einstellungen > Aggregate > Stufenschalter 1...3 >

Bedienzeile	Bereich	Werkeinstellung
Freigabe Schaltwert Ein | Abhängig vom gewählten Typ | je nach Typ
Freigabe Schaltwert Aus | Abhängig vom gewählten Typ | je nach Typ
Da während des Betriebs Schwankungen bei der Messung auftreten können, kann eine Verzögerungszeit eingestellt werden.

So kann z. B. folgende Funktion realisiert werden: Freigabe eines Elektro-Lufterwärmers über eine Strömungsmeldung.

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausschaltverzögerung-Freigabe</td>
<td>00.00...10.00 m:s</td>
<td>00.05 m:s</td>
</tr>
</tbody>
</table>

Wurde eine Nachlaufzeit für den Stufenschalter eingegeben, empfiehlt es sich, den Eingang der Keilriemenüberwachung als Freigabe für den Stufenschalter zu verwenden. So wird sichergestellt, dass ein Elektro-Lufterwärmer erst eingeschaltet werden kann, wenn Strömung vorhanden ist.

Wichtig

10.6.8 Stetiger Ausgang

Das Ausgangssignal des stetigen Ausgangs (Y) kann oben und unten begrenzt werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellsignal minimal</td>
<td>0...100 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Stellsignal maximal</td>
<td>0...100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Jeder stetige Ausgang kann invertiert werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invertierung</td>
<td>Ja, Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Es bedeuten:
- Nein: 0...100 % Last = 0...100 % Ausgang
- Ja: 0...100 % Last = 100...0 % Ausgang

Hinweis

Wenn der Ausgang invertiert ist, dann bleibt der stetige Ausgang 0 Volt bis die erste Stufe (Relais) eingeschaltet ist. Diese Funktionalität steht beim linearen, nicht kaskadierten Stufenschalter zur Verfügung.

10.6.9 Zuordnung von Texten

Die Texte für die Stufenschalter können über die Bedienung angepasst werden. Sie werden in der entsprechenden Bedienzeile und im Menü angezeigt.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufenschalter ..</td>
<td>max. 20 Zeichen</td>
<td>Stufenschalter ..</td>
</tr>
</tbody>
</table>
10.6.10 Funktionskontrolle/Verdrahtungstest

Der aktuelle Zustand der Stufenschalter wird am Bediengerät angezeigt.

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufe 1</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Stufe 2</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Stufe 3</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Stufe 4</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Stetiger Ausgang</td>
<td>0...100 %</td>
</tr>
</tbody>
</table>

Während des Verdrahtungstests kann der Stufenschalter über den Steuerschalter direkt geschaltet werden.

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufenschalter 1</td>
<td>---, 0...100 %</td>
</tr>
<tr>
<td>Stufenschalter 2</td>
<td>---, 0...100 %</td>
</tr>
<tr>
<td>Stufenschalter 3</td>
<td>---, 0...100 %</td>
</tr>
</tbody>
</table>

Beim Verdrahtungstest wird eine Kaskadierung von Stufenschaltern nicht berücksichtigt, d.h. der Verdrahtungstest kann für jeden Stufenschalter individuell durchgeführt werden.

10.6.11 Prioritäten

Für den Linear/Binär-Stufenschalter gelten folgende Prioritäten:

1. Ein/Aus während des Verdrahtungstests
10.7 Variabler Stufenschalter (4..5)

Diese Funktion hat die Aufgabe, mehrstufige Aggregate zu schalten. Alle Ausgänge sind individuell einstellbar.

10.7.1 Aktivieren des Blocks

Der variable Stufenschalter wird durch die Zuweisung eines Ausgangs "Qx" auf die Stufe 1 oder durch die Zuweisung des stetigen Ausgangs auf einen Ausgang "Y" aktiviert.

Der Stufenschalter 4 ist maximal 6-stufig, der Stufenschalter 5 maximal 4-stufig konfigurierbar.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration> Aggregate > Stufenschalter >
Stufenschalter 4..5 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufe 1</td>
<td>---, N.Q1, N.Q2, ... (nur freie Ausgänge)</td>
</tr>
<tr>
<td>Stufe 2</td>
<td>---, N.Q1, N.Q2, ... (nur freie Ausgänge)</td>
</tr>
<tr>
<td>Stufe 3</td>
<td>---, N.Q1, N.Q2, ... (nur freie Ausgänge)</td>
</tr>
<tr>
<td>Stufe 4</td>
<td>---, N.Q1, N.Q2, ... (nur freie Ausgänge)</td>
</tr>
<tr>
<td>Stufe 5</td>
<td>---, N.Q1, N.Q2, ... (nur freie Ausgänge)</td>
</tr>
<tr>
<td>Stufe 6</td>
<td>---, N.Q1, N.Q2, ... (nur freie Ausgänge)</td>
</tr>
<tr>
<td>Stetiger Ausgang</td>
<td>---, N.Y1, N.Y2, ... (nur freie Ausgänge)</td>
</tr>
</tbody>
</table>

10.7.2 Wirkungsweise

Bei der variablen Stufenschaltung können die digitalen Ausgänge individuell in Abhängigkeit der Last gesetzt werden.

Die Stufenschalter lassen sich von maximal 3 internen Sequenzregler (siehe Kapitel 15.1.1 "Zuordnung der Aggregate zu den Sequenzen") ansteuern; dabei gilt das grösste Signal (Maximalauswahl).

Beispiel einer Lastzuschaltung

![Diagramm der Lastzuschaltung]
Der Wirksinn des digitalen Ausganges kann durch die Einstellung der Schaltpunkte bestimmt werden. Die digitalen Ausgänge können sich überlappen.

10.7.3 Sperrzeit

Für die Stufenausgänge kann eine gemeinsame Sperrzeit eingegeben werden. Diese Zeit bewirkt, dass eine Stufe nach dem Ausschalten mindestens die eingestellte Dauer ausgeschaltet bleibt.

10.7.4 Ventilator-Nachlaufzeit

Für die Stufenschalter kann eine Nachlaufzeit eingegeben werden.

Diese Nachlaufzeit bewirkt, dass die Ventilatoren (siehe Kapitel 10.1 "Ventilator (Grundtyp A, P)") nach dem Ausschalten der letzten Schaltstufe für die eingestellte Zeit in Betrieb bleiben.

Hinweis

Bei Ventilatoren, die für Umluftbetrieb konfiguriert wurden, wirkt der Nachlauf nur auf den Zuluftventilator.

Sollen die Pumpen auch nachlaufen, kann das durch Setzen einer Ausschaltverzögerung bei der Pumpe gelöst werden.
10.7.5 Freigabe extern

Für den Stufenschalter kann ein Eingang als Freigabe konfiguriert werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Stufenschalter > Stufenschalter 4...5

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freigabe extern</td>
<td>---, N.X1, N.X2, ... (digitale und analoge Eingänge)</td>
</tr>
</tbody>
</table>

Als Freigabe-Signal kann ein analoges Signal verwendet werden. Über die Einstellwerte "Freigabe Schaltwert Ein" und "Freigabe Schaltwert Aus" können die Schwellwerte gesetzt werden, wenn der entsprechende Stufenschalter freigegeben sein soll.

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
Hauptmenü > Einstellungen > Aggregate > Stufenschalter > Stufenschalter 4...5 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freigabe Schaltwert Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>Freigabe Schaltwert Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
</tbody>
</table>

Da während des Betriebs Schwankungen bei der Messung auftreten können, kann eine Verzögerungszeit eingestellt werden. So kann z. B. folgende Funktion realisiert werden: Freigabe eines Elektro-Lufterwärmers über eine Strömungsmeldung.

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
Hauptmenü > Einstellungen > Aggregate > Stufenschalter > Stufenschalter 4...5 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausschaltverzögerung-Freigabe</td>
<td>00.00...10.00 m:s</td>
<td>00.05 m:s</td>
</tr>
</tbody>
</table>
Wurde eine Nachlaufzeit für den Stufenschalter eingegeben, empfiehlt es sich, den Eingang der Keilriemenüberwachung als Freigabe für den Stufenschalter zu verwen-
den. So wird sichergestellt, dass ein Elektro-Lufterwärmer erst eingeschaltet werden kann, wenn Strömung vorhanden ist.

Wichtig

10.7.6 Stetiger Ausgang

Das Ausgangssignal des stetigen Ausangs (Y) kann oben und unten begrenzt werden.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Einstellungen > ... oder</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellsignal minimal</td>
<td>0...100 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Stellsignal maximal</td>
<td>0...100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Jeder stetige Ausgang kann invertiert werden.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Einstellungen > ... oder</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invertierung</td>
<td>Ja, Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Es bedeuten:
- Nein: 0...100 % Last = 0...100 % Ausgang
- Ja: 0...100 % Last = 100...0 % Ausgang

10.7.7 Zuordnung von Texten

Die Texte für die Stufenschalter können über die Bedienung angepasst werden. Sie werden in der entsprechenden Bedienzeile und im Menü angezeigt.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Einstellungen > ... oder</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufenschalter ..</td>
<td>max. 20 Zeichen</td>
<td>Stufenschalter ..</td>
</tr>
</tbody>
</table>

10.7.8 Funktionskontrolle/Verdrahtungstest

Der aktuelle Zustand der Stufenschalter wird am Bediengerät angezeigt.

<table>
<thead>
<tr>
<th>Anzeigewerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Aggregate > Stufenschalter 4...5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufe 1</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Stufe 2</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Stufe 3</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Stufe 4</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Stufe 5</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Stufe 6</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Stetiger Ausgang</td>
<td>0...100 %</td>
</tr>
</tbody>
</table>
Während des Verdrahtungstests kann der Stufenschalter über den Steuerschalter direkt geschaltet werden.

Verdrahtungstest

Hauptmenü > Inbetriebnahme > Verdrahtungstest > Ausgänge >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufenschalter 4</td>
<td>---, 0...100 %</td>
</tr>
<tr>
<td>Stufenschalter 5</td>
<td>---, 0...100 %</td>
</tr>
</tbody>
</table>

10.7.9 Prioritäten

Für den Stufenschalter gelten folgende Prioritäten:

1. EIN/AUS während des Verdrahtungstests
10.8 Logik

Der Logik-Block dient der logischen Verknüpfung von mehreren Eingangssignalen. Es stehen 4 unabhängige Logik-Funktionsblöcke zur Verfügung.

Pro Logik-Block kann ein Betriebsschalter aktiviert werden, um dem Benutzer einen Handeingriff auf der obersten Hauptmenüebene zu ermöglichen. Wählbar ist Auto, Aus oder Ein. Dieser Eingriff wirkt am Ausgang des Logik-Funktionsblocks.

Jedem Eingang kann ein digitales oder analoges Signal zugeordnet werden. Über Ein- und Ausschaltwerte kann aus einem analogen Signal ein 2-Punktsignal Ein, Aus erzeugt werden. Dabei gilt:

Ist der Schaltwert Ein > Schaltwert Aus → Übergang von 0 → 1
Ist der Schaltwert Ein < Schaltwert Aus → Übergang von 1 → 0

Die Differenz zwischen Schaltwert Ein und Schaltwert Aus entspricht der Hysterese.

Die Ergebnisse aus den Logiken A und B wirken auf die "Logik C". Hier kann aus den Logikfunktionen AND, NAND, OR, NOR, EXOR oder EXNOR gewählt werden.

Die Abarbeitung der Logik-Funktionsblöcke erfolgt aufsteigend; erst 1 dann 2.
Nachfolgend sind die Logiktabellen für die einstellbaren Logikfunktionen AND, NAND, OR, NOR, EXOR und EXNOR am Beispiel von 2 Eingängen aufgeführt.

Logiktabellen

<table>
<thead>
<tr>
<th>AND</th>
<th>NAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingang 1</td>
<td>Eingang 2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OR</th>
<th>NOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingang 1</td>
<td>Eingang 2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXOR</th>
<th>EXNOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingang 1</td>
<td>Eingang 2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

10.8.1 Aktivieren der Logik

Die Logik wird aktiviert, indem mindestens ein Eingang oder der Betriebsschalter konfiguriert wird.

Die Logikfunktionen für die Logiken A, B und C können im Menü "Zusatzkonfiguration" konfiguriert werden.

Mit der Einstellung der Bedienzeile "Betriebsschalter" wird gewählt, ob der Betriebsschalter im Hauptmenü der Benutzerebene angezeigt werden soll.

Hinweis

Der Betriebsschalter gibt dem Benutzer die Möglichkeit Handeingriffe vorzunehmen. Während eines aktiven Handeigngriffs wird keine Warnung angezeigt.

Konfiguration

154/328
Wird für die Logikfunktion ein erweitertes Zeitformat (> 59.55 m:s) benötigt, kann das Format "h:m" verwendet werden.

10.8.2 Zuordnung von Texten

Jeder Logik und dem Betriebsschalter kann ein Text zugeordnet werden. Dieser wird im Menü und in der Bedienzeile angezeigt.

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder Hauptmenü > Einstellungen > Aggregate > Logikfunktionen > Logik 1...4 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logik 1...4</td>
<td>max. 20 Zeichen</td>
<td>Logik 1...4</td>
</tr>
<tr>
<td>Betriebsschalter 1...4</td>
<td>max. 20 Zeichen</td>
<td>Betriebsschalter 1...4</td>
</tr>
</tbody>
</table>

Eine Übersicht aller editierbaren Texte und die Vorgehensweise zum Zurücksetzen von Texten sind in Kapitel 31.4 zu finden.

10.8.3 Einstellwerte Schaltwert Ein und Aus

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder Hauptmenü > Einstellungen > Aggregate > Logikfunktionen > Logik 1...4 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Logik A Schaltwert 1] Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Logik A Schaltwert 1] Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Logik A Schaltwert 2] Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Logik A Schaltwert 2] Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Logik A Schaltwert 3] Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Logik A Schaltwert 3] Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Logik B Schaltwert 1] Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Logik B Schaltwert 1] Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Logik B Schaltwert 2] Ein</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
<tr>
<td>[Logik B Schaltwert 2] Aus</td>
<td>Abhängig vom gewählten Typ</td>
<td>je nach Typ</td>
</tr>
</tbody>
</table>

10.8.4 Einschaltverzögerung / Ausschaltverzögerung

Für den Logik-Ausgang kann eine Einschaltverzögerung und eine Ausschaltverzögerung eingestellt werden.

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder Hauptmenü > Einstellungen > Aggregate > Logikfunktionen > Logik 1...4 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einschaltverzögerung</td>
<td>00.00...59.55 m:s</td>
<td>00.00 m:s</td>
</tr>
<tr>
<td>Ausschaltverzögerung</td>
<td>00.00...59.55 m:s</td>
<td>00.00 m:s</td>
</tr>
</tbody>
</table>

Die Einschaltverzögerung wirkt immer beim Einschaltbefehl, die Ausschaltverzögerung immer beim Ausschaltbefehl.
10.8.5 Minimale Einschaltdauer

Für den Logik-Ausgang kann eine minimale Einschaltdauer eingestellt werden. D. h., wenn ein Einschaltbefehl kommt, bleibt der Ausgang für die Dauer der eingestellten Zeit eingeschaltet.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Einstellungen > oder</td>
</tr>
<tr>
<td>Hauptmenü > Einstellungen > Aggregate > Logikfunktionen > Logik 1...4 ></td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Einschaltdauer minimal</td>
</tr>
</tbody>
</table>

Die minimale Einschaltdauer wirkt immer nach einem Einschaltbefehl.

10.8.6 Minimale Ausschaltdauer

Die minimale Ausschaltdauer verhindert ein zu häufiges Wiedereinschalten des Aggregates.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Einstellungen > oder</td>
</tr>
<tr>
<td>Hauptmenü > Einstellungen > Aggregate > Logikfunktionen > Logik 1...4 ></td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Ausschaltdauer minimal</td>
</tr>
</tbody>
</table>

Die minimale Ausschaltdauer wirkt immer nach einem Ausschaltbefehl.

10.8.7 Betriebsschalter

Im Hauptmenü kann über den Betriebsschalter die Betriebsart des Ausgangs des Logikblocks vorgegeben werden und es wird der aktuelle Zustand dargestellt. Die Einschalt- und Ausschaltverzögerung sowie die minimale Einschaltdauer und die minimale Ausschaltdauer werden berücksichtigt.

<table>
<thead>
<tr>
<th>Anzeigewerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Betriebsschalter 1...4 ></td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Vorgabe</td>
</tr>
<tr>
<td>Zustand</td>
</tr>
</tbody>
</table>

Hinweis

Wird der Betriebsschalter nachträglich wieder wegkonfiguriert, muss vorher unbedingt sichergestellt sein, dass er auf Position "Auto" steht. Andernfalls steht der Ausgang nachher permanent auf "Ein" oder "Aus".

10.8.8 Verdrahtungstest

<table>
<thead>
<tr>
<th>Verdrahtungstest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Verdrahtungstest > Ausgänge ></td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Logik n</td>
</tr>
</tbody>
</table>
10.8.9 Prioritäten

Im Betrieb der Logik gelten die folgenden Prioritäten:

1. EIN/AUS während des Verdrahtungstests
2. AUS durch "Ausschaltduauer minimal"
3. EIN durch "Einschaltduauer minimal"
4. AUS durch Einschaltverzögerung
5. EIN durch Ausschaltverzögerung
6. EIN durch Betriebsschalter
7. EIN durch Logik-Eingänge

10.8.10 Hinweise

Wird bei einem analogen Eingang des Logikblacks der Schaltwert Ein = Schaltwert Aus gesetzt, so erhält man keine Hysterese.

Tritt ein Fehler an einem konfigurierten Eingang auf, so wird der Zustand "Aus" für den gesamten Logik-Block ausgegeben.

Sind nur Eingänge an der Logik A konfiguriert, so wird die Logik C nicht berücksichtigt und das Signal der Logik A direkt auf den Ausgang gegeben.

Sind nur Eingänge an der Logik B konfiguriert, so wird die Logik C nicht berücksichtigt und das Signal der Logik B direkt auf den Ausgang gegeben.

Die Logik-Blöcke werden sequentiell entsprechend ihrer Instanznummer abgearbeitet, d. h. zuerst Logik 1, dann Logik 2.

Werden Ausgänge zurückgeschlauft, z. B. vom Ausgang des Logik-Block 2 auf den Eingang des Logik-Block 1, so wird das Ergebnis am Logik-Block 1 erst einen Verarbeitungszyklus später anliegen.

10.8.11 Anwendungsbeispiel Speicherladung

Das nachfolgende Beispiel zeigt einen Lösungsvorschlag für eine Selbsthaltungsfunktion. Der Messwert, der am Logik A Eingang 1 angeschlossen ist, gibt den Einschaltbefehl für die Speicherladung. Der Messwert an Logik B Eingang 1 beendet den Ladevorgang.
Dazu notwendige Konfiguration und Einstellwerte:

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Logik A] Funktion</td>
<td>OR</td>
</tr>
<tr>
<td>[Logik B] Funktion</td>
<td>NAND</td>
</tr>
<tr>
<td>[Logik C] Funktion</td>
<td>AND</td>
</tr>
<tr>
<td>[Logik A Schaltwert 1] Ein</td>
<td>30 °C</td>
</tr>
<tr>
<td>[Logik A Schaltwert 1] Aus</td>
<td>35 °C</td>
</tr>
<tr>
<td>[Logik B Schaltwert 1] Ein</td>
<td>65 °C</td>
</tr>
<tr>
<td>[Logik B Schaltwert 1] Aus</td>
<td>60 °C</td>
</tr>
</tbody>
</table>

10.8.12 Anwendungsbeispiel RS-Flip Flop

Das nachfolgende Beispiel zeigt einen Lösungsvorschlag für einen RS-Flip Flop.

![RS-Flip Flop Diagramm]

Dazu notwendige Konfiguration:

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logik 1 [Logik A] Funktion</td>
<td>NOR</td>
</tr>
<tr>
<td>Logik 2 [Logik A] Funktion</td>
<td>NOR</td>
</tr>
</tbody>
</table>

Hinweis

Wahrheitstabelle:

<table>
<thead>
<tr>
<th>Setzen</th>
<th>Rücksetzen</th>
<th>Q</th>
<th>¬Q</th>
<th>Zustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Speichern</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Rücksetzen</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Setzen</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>Unbestimmt</td>
</tr>
</tbody>
</table>
11 Temperaturregler Lüftung (Grundtyp A)

11.1 Allgemeines

Der Regler 1 ist für Lüftungsanwendungen als Kaskaden- oder als Konstanttemperaturregler bestimmt. Regler 2 und Regler 3 sind Universalregler.

Es stehen verschiedene Regelungsarten zur Verfügung:
- Zulufttemperaturregelung
- Raumtemperaturregelung (optional mit Zuluftbegrenzung)
- Ablufttemperaturregelung (optional mit Zuluftbegrenzung)
- Raum/Zulufttemperatur-Kaskadenregelung
- Abluft/Zulufttemperatur-Kaskadenregelung

Es stehen folgende Regler (Sequenzregler) zur Verfügung:
- RMU710B: Regler 1
- RMU720B: Regler 1, Regler 2
- RMU730B: Regler 1, Regler 2, Regler 3

11.1.1 Vorgehen beim Konfigurieren der Regler

<table>
<thead>
<tr>
<th>Handlungsschritt</th>
<th>Hinweise in…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelungsart festgelegen</td>
<td>Kapitel 11.2</td>
</tr>
<tr>
<td>Folgende Hilfsfunktionen können zusätzlich aktiviert werden:</td>
<td>Kapitel 11.9</td>
</tr>
<tr>
<td>• Sommer-/ Winterkompensation (Regler 1)</td>
<td>Kapitel 15.6</td>
</tr>
<tr>
<td>• Universalschiebung (Regler 2, Regler 3)</td>
<td>Kapitel 15.2</td>
</tr>
<tr>
<td>• Allgemeinbegrenzer (Regler 2, Regler 3)</td>
<td>Kapitel 15.3</td>
</tr>
<tr>
<td>• Sequenzbegrenzer</td>
<td>Kapitel 15.4</td>
</tr>
<tr>
<td>• Sequenzsperrung nach TA</td>
<td>Kapitel 15.8</td>
</tr>
<tr>
<td>• Regelungs-Timeout</td>
<td></td>
</tr>
<tr>
<td>Den einzelnen Sequenzen Ausgänge zuordnen</td>
<td>Kapitel 15.1.1…15.1.3</td>
</tr>
<tr>
<td>Bei jedem Regler kann eine Abweichungsmeldung aktiviert werden</td>
<td>Kapitel 15.7</td>
</tr>
<tr>
<td>Regelparameter Regler 1…3</td>
<td>Kapitel 15.1.4</td>
</tr>
</tbody>
</table>

11.1.2 Begrenzungen und Sollwerteinflüsse

Folgende Funktionen können auf die Sollwerte Einfluss haben:
- Raumgerät
- Sommer/Winterkompensation (Kapitel 11.9)
- Sollwertbegrenzungen (Kapitel 11.10)
- Fernsollwertgeber absolut
- Fernsollwertgeber relativ
11.1.3 Priorität der Funktionen

Bei gleichzeitiger Aktivierung verschiedener Funktionen, welche auf den gleichen Regler wirken, gilt folgende Priorität:
1. Frostschutz
2. Sperrung der Sequenzen nach Heizen/Kühlen Umschaltung
3. Vorwärmfunktion
4. Sequenzsperrung nach TA
5. Sequenzbegrenzer
6. Zuluftbegrenzer
7. Sequenzregler, Zuordnung der Aggregate

11.2 Übersicht der Regelungsarten

<table>
<thead>
<tr>
<th>Regelungsart</th>
<th>Bedienzeile</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zulufttemperaturregelung</td>
<td>Eingangsbezeichner N.Xm</td>
<td>Zulufttemperatur Konst (Zuluft)</td>
</tr>
<tr>
<td>(Kapitel 11.3)</td>
<td>Regelstrategie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kask./Konst.-Umschalteingang</td>
<td></td>
</tr>
<tr>
<td>Raumtemperaturregelung</td>
<td>Eingangsbezeichner N.Xm</td>
<td>Raumtemperatur (oder vom Bus)</td>
</tr>
<tr>
<td>(Kapitel 11.4)</td>
<td>Regelstrategie</td>
<td>Defaultwert (Kaskade)*</td>
</tr>
<tr>
<td></td>
<td>Kask./Konst.-Umschalteingang</td>
<td></td>
</tr>
<tr>
<td>Ablufttemperaturregelung</td>
<td>Eingangsbezeichner N.Xm</td>
<td>Ablufttemperatur Defaultwert (Kaskade)*</td>
</tr>
<tr>
<td>(Kapitel 11.4)</td>
<td>Regelstrategie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kask./Konst.-Umschalteingang</td>
<td></td>
</tr>
</tbody>
</table>

* Für reine Konstanttemperaturregelungen auf Raum- oder Ablufttemperatur bedarf es keiner Einstellung der Regelstrategie; sie kann auf dem Defaultwert belassen werden

Konstanttemperaturregelung mit Zuluftbegrenzung

<table>
<thead>
<tr>
<th>Regelungsart</th>
<th>Bedienzeile</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumtemperaturregelung mit</td>
<td>Eingangsbezeichner N.Xm</td>
<td>Raumtemperatur (oder vom Bus)</td>
</tr>
<tr>
<td>Zuluftbegrenzung (Kapitel 11.5)</td>
<td>Regelstrategie</td>
<td>Zulufttemperatur Mit Zuluftbegrenzung</td>
</tr>
<tr>
<td></td>
<td>Kask./Konst.-Umschalteingang</td>
<td></td>
</tr>
<tr>
<td>Ablufttemperaturregelung mit</td>
<td>Eingangsbezeichner N.Xn</td>
<td>Ablufttemperatur Zulufttemperatur</td>
</tr>
<tr>
<td>Zuluftbegrenzung (Kapitel 11.5)</td>
<td>Regelstrategie</td>
<td>Mit Zuluftbegrenzung</td>
</tr>
<tr>
<td></td>
<td>Kask./Konst.-Umschalteingang</td>
<td></td>
</tr>
</tbody>
</table>
Kaskadentemperaturregelung

<table>
<thead>
<tr>
<th>Regelungsart</th>
<th>Bedienelement</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raum-/Zulufttemperatur-Kaskadenregelung (Kapitel 11.6)</td>
<td>Eingangsbezeichner N.Xn</td>
<td>Raumtemperatur (oder vom Bus)</td>
</tr>
<tr>
<td></td>
<td>Eingangsbezeichner N.Xm</td>
<td>Zulufttemperatur</td>
</tr>
<tr>
<td></td>
<td>Regelstrategie</td>
<td>Kaskade</td>
</tr>
<tr>
<td></td>
<td>Kask./Konst.-Umschalteingang</td>
<td>---</td>
</tr>
<tr>
<td>Abluft-/Zulufttemperatur-Kaskadenregelung (Kapitel 11.6)</td>
<td>Eingangsbezeichner N.Xn</td>
<td>Ablufttemperatur</td>
</tr>
<tr>
<td></td>
<td>Eingangsbezeichner N.Xm</td>
<td>Zulufttemperatur</td>
</tr>
<tr>
<td></td>
<td>Regelstrategie</td>
<td>Kaskade</td>
</tr>
<tr>
<td></td>
<td>Kask./Konst.-Umschalteingang</td>
<td>---</td>
</tr>
</tbody>
</table>

Kaskaden-/Konstanttemperaturregelung mit Umschaltung via Kask./Konst.-Umschalteingang (siehe Kapitel 11.7)

<table>
<thead>
<tr>
<th>Regelungsart</th>
<th>Bedienelement</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raum-Zulufttemperatur-Kaskadenregelung (bei Heizung aus, Sommer) und Zulufttemperaturregelung (bei Heizung ein, Winter)</td>
<td>Eingangsbezeichner N.Xn</td>
<td>Raumtemperatur (oder vom Bus)</td>
</tr>
<tr>
<td></td>
<td>Eingangsbezeichner N.Xm</td>
<td>Zulufttemperatur</td>
</tr>
<tr>
<td></td>
<td>Regelstrategie</td>
<td>Kaskade</td>
</tr>
<tr>
<td></td>
<td>Kask./Konst.-Umschalteingang</td>
<td>N.X(n)</td>
</tr>
<tr>
<td>Abluft-Zulufttemperatur-Kaskadenregelung (bei Heizung aus, Sommer) und Zulufttemperaturregelung (bei Heizung ein, Winter)</td>
<td>Eingangsbezeichner N.Xn</td>
<td>Ablufttemperatur</td>
</tr>
<tr>
<td></td>
<td>Eingangsbezeichner N.Xm</td>
<td>Zulufttemperatur</td>
</tr>
<tr>
<td></td>
<td>Regelstrategie</td>
<td>Kaskade</td>
</tr>
<tr>
<td></td>
<td>Kask./Konst.-Umschalteingang</td>
<td>N.X(n)</td>
</tr>
</tbody>
</table>

Raumregelungskombination mit Heizungsregler

Kaskaden-/Konstanttemperaturregelung mit Umschaltung via Bus (= Wechselnd)

Der Lüftungsregler regelt zusammen mit einem Heizungsregler den gleichen Raum (siehe Kapitel 11.8 "Raumregelungskombinationen mit Heizungsregler" bzw. Kapitel 11.8.4 "Regelstrategie wechselnd").

<table>
<thead>
<tr>
<th>Regelungsart</th>
<th>Bedienelement</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raum-Zulufttemperatur-Kaskadenregelung (bei Heizung aus, Sommer) und Zulufttemperaturregelung (bei Heizung ein, Winter)</td>
<td>Eingangsbezeichner N.Xn</td>
<td>Raumtemperatur (oder vom Bus)</td>
</tr>
<tr>
<td></td>
<td>Eingangsbezeichner N.Xm</td>
<td>Zulufttemperatur</td>
</tr>
<tr>
<td></td>
<td>Regelstrategie</td>
<td>Kaskade</td>
</tr>
<tr>
<td></td>
<td>Kask./Konst.-Umschalteingang</td>
<td>Wechselnd</td>
</tr>
<tr>
<td>Abluft-Zulufttemperatur-Kaskadenregelung (bei Heizung aus, Sommer) und Zulufttemperaturregelung (bei Heizung ein, Winter)</td>
<td>Eingangsbezeichner N.Xn</td>
<td>Ablufttemperatur</td>
</tr>
<tr>
<td></td>
<td>Eingangsbezeichner N.Xm</td>
<td>Zulufttemperatur</td>
</tr>
<tr>
<td></td>
<td>Regelstrategie</td>
<td>Wechselnd</td>
</tr>
<tr>
<td></td>
<td>Kask./Konst.-Umschalteingang</td>
<td>Wechselnd ---</td>
</tr>
</tbody>
</table>
Mit folgenden Konfigurationsbedienzeilen werden die gewünschten Regelungsarten konfiguriert:

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Eingangsbezeichner

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X(n)</td>
<td>Aktivieren der Funktion, indem einem Eingang der Wert Raumtemperatur, Ablufttemperatur, Zulufttemperatur zugewiesen wird</td>
</tr>
<tr>
<td>...</td>
<td>dito</td>
</tr>
<tr>
<td>RMZ788(2).X4</td>
<td>dito</td>
</tr>
</tbody>
</table>

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Regler 1 > Bereich Werkeinstellung

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelstrategie</td>
<td>Mit Zuluftbegrenzung, Kaskade, Konstant (Zuluft) (Zuluft), Wechselnd</td>
</tr>
<tr>
<td></td>
<td>Kaskade</td>
</tr>
</tbody>
</table>

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Regler 1 > Eingänge

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kask./Konst.-</td>
<td>---, N.X1, N.X2, ... (nur digitale Eingänge)</td>
</tr>
<tr>
<td>Umschalteingang</td>
<td>Beim Eingangssignal bedeuten:</td>
</tr>
<tr>
<td></td>
<td>• Kontakt geschlossen: Zulufttemperaturregelung</td>
</tr>
<tr>
<td></td>
<td>• Kontakt offen: Kaskaden-Regelung</td>
</tr>
</tbody>
</table>

11.2.2 Fehlerbehandlung

Eine Fehlkonfiguration bewirkt folgendes:

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellung</th>
<th>Eingriffsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingangsbezeichner</td>
<td>N.X(n) Der (die) erforderliche(n) Wert(e) "Raumtemperatur", "Ablufttemperatur" oder "Zulufttemperatur" wurde(n) nicht zugewiesen</td>
<td>• Regler 1 nicht aktiv, bzw. bei der entsprechenden Bedienzeile wird für den Istwert "--- °C" angezeigt</td>
</tr>
<tr>
<td></td>
<td>Der gleiche Eingangsbezeichner wurde mehrfach zugewiesen</td>
<td>• Regler 1 ist aktiv und verwendet den ersten zugewiesenen Eingang</td>
</tr>
<tr>
<td>Regelstrategie</td>
<td>Regelstrategie stimmt nicht mit Eingangsbezeichner N.X(n) überein bzw. 'falsche' Regelstrategie eingestellt</td>
<td>• Regler 1 nicht aktiv, bzw. Regler 1 im Menübaum nicht sichtbar, oder \regelt gemäss eingestellter Regelstrategie, sofern die entsprechenden Eingangsbezeichner vorhanden sind</td>
</tr>
</tbody>
</table>
Beim Verlassen des Inbetriebnahmemenüs wird überprüft, ob die Raumtemperatur, Ablufttemperatur bzw. Zulufttemperatur angeschlossen sind. Ist die entsprechende Temperatur zu diesem Zeitpunkt angeschlossen und fehlt sie später, wird eine Störungsmeldung generiert.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>[N.X1] Fühlerfehler</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
<tr>
<td>60</td>
<td>Raumtemp.-Fühlerfehler Anl. 1</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

Fehlt die Hauptregelgröße, so wird die Anlage ausgeschaltet und eine Störungsmeldung "[Hauptreg'grösse 1] Fühlerfehler" wird ausgelöst.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3011</td>
<td>[Hauptreg'grösse 1] Fühlerfehler</td>
<td>Dringende Meldung, mit Anlagenstopp; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

Regelungsart	Hauptregelgrösse
Zulufttemperaturregelung | Zulufttemperatur
Raumtemperaturregelung | Raumtemperatur
Ablufttemperaturregelung | Ablufttemperatur
Raumtemperaturregelung mit Zuluftbegrenzung | Raumtemperatur
Ablufttemperaturregelung mit Zuluftbegrenzung | Ablufttemperatur
Raum-/Zulufttemperatur-Kaskadenregelung | Zulufttemperatur
Abluft-/Zulufttemperatur-Kaskadenregelung | Zulufttemperatur

Hinweis

Wird bei einer richtig eingestellten Regelungsart neben dem Eingangsbezeichner Ablufttemperatur zusätzlich auch der Eingangsbezeichner Raumtemperatur konfiguriert, erfolgt die Regelung immer mit der Ablufttemperatur.

Die Raumtemperatur kann verwendet werden für Funktionen wie den Stützbetrieb, die Nachtlüftung, zur Versendung auf den Bus oder zur Anzeige.

Die Wirkung, wenn ein oder mehrere Eingangsbezeichner gleichzeitig angeschlossen sind, ist im Kapitel 8.3 "Spezielle analoge Eingänge" näher erläutert.
11.3 Zulufttemperaturregelung

11.3.1 Wirkungsweise

Die Zulufttemperatur wird mit einer PID-Regelung auf den eingestellten Zuluftsollwert geregelt.

11.3.2 Zuluftsollwerte

Für die Betriebsarten
- Komfort,
- Prekomfort und
- Economy können eigene Sollwerte vorgegeben werden.

Einstellwerte

- Hauptmenü > Inbetriebnahme > Einstellungen > ...
- Hauptmenü > Einstellungen > Regler 1 > Sollwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economy-Kühl-Sollwert</td>
<td></td>
<td>30 °C</td>
</tr>
<tr>
<td>Prekomfort-Kühl-Sollwert</td>
<td></td>
<td>28 °C</td>
</tr>
<tr>
<td>Komfort-Kühl-Sollwert</td>
<td></td>
<td>24 °C</td>
</tr>
<tr>
<td>Komfort-Heiz-Sollwert</td>
<td></td>
<td>21 °C</td>
</tr>
<tr>
<td>Prekomfort-Heiz-Sollwert</td>
<td></td>
<td>19 °C</td>
</tr>
<tr>
<td>Economy-Heiz-Sollwert</td>
<td></td>
<td>15 °C</td>
</tr>
</tbody>
</table>

Hinweis

Ist die Raumtemperatur vorhanden, sind Funktionen wie Stützbetrieb und Nachtkühlung nutzbar, die Sollwerteinflüsse sind aktiv.

Anzeigewerte

- Hauptmenü > Regler 1

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zulufttemperatur-Istwert</td>
<td></td>
</tr>
<tr>
<td>Zulufttemperatur-Sollwert akt</td>
<td></td>
</tr>
</tbody>
</table>

Sollwertbegrenzungen

Siehe Kapitel 11.10
11.4 Raum- oder Ablufttemperaturregelung

Raumtemperaturregelung

Ablufttemperaturregelung

11.4.1 Wirkungsweise

Die Lufttemperatur wird mit einer PID-Regelung auf den eingestellten Sollwert geregelt.

11.4.2 Raum-Sollwerte

Für die Betriebsarten Komfort, Prekomfort und Economy können eigene Sollwerte vorgegeben werden.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Einstellungen > ... oder</td>
</tr>
<tr>
<td>Hauptmenü > Einstellungen > Regler 1 > Raum-Sollwerte</td>
</tr>
<tr>
<td>Hauptmenü > Regler 1 ></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economy-Kühl-Sollwert</td>
<td>30 °C</td>
<td></td>
</tr>
<tr>
<td>Prekomfort-Kühl-Sollwert</td>
<td>28 °C</td>
<td></td>
</tr>
<tr>
<td>Komfort-Kühl-Sollwert</td>
<td>24 °C</td>
<td></td>
</tr>
<tr>
<td>Komfort-Heiz-Sollwert</td>
<td>21 °C</td>
<td></td>
</tr>
<tr>
<td>Prekomfort-Heiz-Sollwert</td>
<td>19 °C</td>
<td></td>
</tr>
<tr>
<td>Economy-Heiz-Sollwert</td>
<td>15 °C</td>
<td></td>
</tr>
</tbody>
</table>

Hinweis

Ist bei gewählter Ablufttemperaturregelung noch die Raumtemperatur vorhanden, so wird die Raumtemperatur für die Funktionen wie Stützbetrieb, Nachtkühlung, oder Sollwerteinflüsse verwendet. Bei Raumtemperaturregelung steht die Raumtemperatur den Funktionen wie Stützbetrieb, Nachtkühlung, und Sollwerteinflüsse zur Verfügung.

Anzeigewerte

Raumtemperaturregelung

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumtemperatur-Istwert</td>
<td></td>
</tr>
<tr>
<td>Raumtemp.-Sollwert aktuell</td>
<td></td>
</tr>
</tbody>
</table>

Anzeigewerte

Ablufttemperaturregelung

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ablufttemperatur-Istwert</td>
<td></td>
</tr>
<tr>
<td>Ablufttemp.-Sollwert aktuell</td>
<td></td>
</tr>
</tbody>
</table>
11.5 Raum- oder Ablufttemperaturregelung mit Zuluftbegrenzung

<table>
<thead>
<tr>
<th>Raumtemperaturregelung mit Zuluftbegrenzung</th>
<th>Ablufttemperatur mit Zuluftbegrenzung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11.5.1 Wirkungsweise

Die Raum-/Ablufttemperatur wird mit einer PID-Regelung auf den eingestellten Raum-Sollwert geregelt, die Zuluft kann innerhalb der eingestellten Begrenzungswerte variieren.

Empfehlung

11.5.2 Raum-Sollwerte

Für die Betriebsarten Komfort, Prekomfort und Economy können eigene Sollwerte vorgegeben werden.

Einstellwerte

 Usuario: Hauptmenü > Inbetriebnahme > Einstellungen > oder

 Usuario: Hauptmenü > Einstellungen > Regler 1 > Raum-Sollwerte >

 Gesamt: Hauptmenü > Regler 1 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economy-Kühl-Sollwert</td>
<td>30 °C</td>
<td></td>
</tr>
<tr>
<td>Prekomfort-Kühl-Sollwert</td>
<td>28 °C</td>
<td></td>
</tr>
<tr>
<td>Komfort-Kühl-Sollwert</td>
<td>24 °C</td>
<td></td>
</tr>
<tr>
<td>Komfort-Heiz-Sollwert</td>
<td>21 °C</td>
<td></td>
</tr>
<tr>
<td>Prekomfort-Heiz-Sollwert</td>
<td>19 °C</td>
<td></td>
</tr>
<tr>
<td>Economy-Heiz-Sollwert</td>
<td>15 °C</td>
<td></td>
</tr>
</tbody>
</table>

Hinweis

Ist bei gewählter Ablufttemperaturregelung noch die Raumtemperatur vorhanden, so wird die Raumtemperatur für die Funktionen wie Stützbetrieb, Nachtkühlung, oder Sollwerteinflüsse verwendet. Bei Raumtemperaturregelung steht die Raumtemperatur den Funktionen wie Stützbetrieb, Nachtkühlung, und Sollwerteinflüsse zur Verfügung.

Sollwertbegrenzungen Siehe Kapitel 11.10
11.5.3 Zuluftbegrenzer

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grenzwert oben</td>
<td>35.0 °C</td>
<td></td>
</tr>
<tr>
<td>Grenzwert unten</td>
<td>16.0 °C</td>
<td></td>
</tr>
<tr>
<td>Differenz oben</td>
<td>0.0...500.0 K</td>
<td>50.0 K</td>
</tr>
<tr>
<td>Differenz unten</td>
<td>0.0...500.0 K</td>
<td>50.0 K</td>
</tr>
<tr>
<td>Reduktion Min-Begrenz. Kühlen</td>
<td>0...50 K</td>
<td>0.0 K</td>
</tr>
<tr>
<td>P-Band Xp</td>
<td>0.0...500.0 K</td>
<td>15 K</td>
</tr>
<tr>
<td>Nachstellzeit Tn</td>
<td>00.00...59.55 m:s</td>
<td>02.00 m:s</td>
</tr>
</tbody>
</table>

11.5.4 Wirkungsweise

Es kann eine absolute Begrenzung und eine relative Begrenzung eingegeben werden. Wird nur eine dieser Funktionen gewünscht, kann die andere Funktion deaktiviert werden, indem die Sollwerte weit aussen gesetzt werden. Fehlt der Zulufttemperaturfühler, so wird die Begrenzung inaktiv gesetzt.

Zuluftbegrenzung absolut

Beim Überschreiten- oder Unterschreiten des "Grenzwert oben" oder "Grenzwert unten" übersteuert die Begrenzungsfunktion mit PI-Verhalten die normale Regelfunktion, um den Begrenzungs-Sollwert einzuhalten.
Spezialfall

Ist die Kühlsequenz 4+5 aktiv, kann die Minimalbegrenzung um einen einstellbaren Wert tiefer eingestellt werden (Bedienzeile "Reduktion Min-Begrenz. Kühlten"). So kann verhindert werden, dass bei einer stufigen Kühlung die Kältemaschine kurz nach dem Einschalten sofort wieder ausschaltet.

Zuluftbegrenzung relativ

Die eingestellten Begrenzungs-Sollwerte beziehen sich auf die Temperaturdifferenz zwischen der Raumtemperatur und der Zulufttemperatur. Dazu kann eine "Differenz oben" und "Differenz unten" eingegeben werden, innerhalb welcher sich die Zuluft zu der Raumtemperatur bewegen darf.

Anzeigewerte

<table>
<thead>
<tr>
<th>Hauptmenü > Regler 1 ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Zulufttemperatur-Istwert</td>
</tr>
</tbody>
</table>

11.6 Raum/Zuluft- oder Abluft/Zuluft-Kaskadenregelung

11.6.1 Wirkungsweise

Die nachfolgende Beschreibung gilt analog für die Abluft/Zuluftkaskade.

Als Grenzwerte für den Zuluftregler können vorgegeben werden:

- Absolute Maximal- und Minimalbegrenzung der Zulufttemperatur
- Maximal- und Minimal-Temperaturdifferenz-Begrenzung zwischen dem Raumtemperatur-Istwert und der Zulufttemperatur
Anwendungsbeispiel

Quellluftauslass: Laminare Luftströmung im Aufenthaltsbereich. Die Zuluft darf z. B. maximal 4 Kelvin unter der Raumtemperatur eingeleitet werden.

Funktionsdiagramm

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > oder
Hauptmenü > Einstellungen > Regler 1 > Kaskadenregler >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluftgrenzwert max</td>
<td>35.0 °C</td>
<td></td>
</tr>
<tr>
<td>Zuluftgrenzwert min</td>
<td>16.0 °C</td>
<td></td>
</tr>
<tr>
<td>Zuluft-Maximalbegrenz.-Delta</td>
<td>0.0...50.0 K</td>
<td>50.0 K</td>
</tr>
<tr>
<td>Zuluft-Minimalbegrenz.-Delta</td>
<td>0.0...50.0 K</td>
<td>50.0 K</td>
</tr>
<tr>
<td>Raumeinfluss-Xp</td>
<td>1.0...100.0</td>
<td>4 K</td>
</tr>
<tr>
<td>Raumeinfluss-Tn</td>
<td>00.00...59.55 m:s</td>
<td>10.00 m:s</td>
</tr>
</tbody>
</table>

11.6.2 Raum-Sollwerte

Für die Betriebsarten Komfort, Prekomfort und Economy können eigene Sollwerte vorgegeben werden.

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > oder
Hauptmenü > Einstellungen > Regler 1 > Raum-Sollwerte >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>economy-Kühl-Sollwert</td>
<td>30 °C</td>
<td></td>
</tr>
<tr>
<td>prekomfort-Kühl-Sollwert</td>
<td>28 °C</td>
<td></td>
</tr>
<tr>
<td>komfort-Kühl-Sollwert</td>
<td>24 °C</td>
<td></td>
</tr>
<tr>
<td>economy-Heiz-Sollwert</td>
<td>21 °C</td>
<td></td>
</tr>
<tr>
<td>prekomfort-Heiz-Sollwert</td>
<td>19 °C</td>
<td></td>
</tr>
<tr>
<td>economy-Heiz-Sollwert</td>
<td>15 °C</td>
<td></td>
</tr>
</tbody>
</table>

Sollwertbegrenzungen

Siehe Kapitel 11.10
Hauptmenü > Regler 1 > Bedienzeile

<table>
<thead>
<tr>
<th>Anzeigewerte</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumtemperatur-Istwert</td>
<td>bei Raum/Zuluft-Kaskadenregelung</td>
</tr>
<tr>
<td>Raumatemp.-Sollwert aktuell</td>
<td>bei Raum/Zuluft-Kaskadenregelung</td>
</tr>
<tr>
<td>Ablufttemperatur-Istwert</td>
<td>bei Abluft/Zuluft-Kaskadenregelung</td>
</tr>
<tr>
<td>Ablufttemp.-Sollwert aktuell</td>
<td>bei Abluft/Zuluft-Kaskadenregelung</td>
</tr>
<tr>
<td>Zulufttemperatur-Istwert</td>
<td></td>
</tr>
<tr>
<td>Zulufttemperatur-Sollwert akt</td>
<td></td>
</tr>
</tbody>
</table>

11.6.3 Zweite Ventilatorstufe nach Wärme-/Kältebedarf

Bei Bedarf kann der Raumregler den Ventilator in die 2. Stufe schalten, um so mehr Wärme- oder Kälteenergie transportieren zu können. Dies kann separat für Heizen und Kühl aktiviert werden. Damit der Ventilator in die 2. Stufe geschaltet werden kann, muss ein 2-stufiger Ventilator konfiguriert sein (siehe Kapitel 10.1 "Ventilator (Grundtyp A, P)"). Das Schalten des Ventilators erfolgt nach folgendem Diagramm:

Funktionsdiagramm

Heizen

- SpSu
- Zuluftgrenzwert max
- Zuluftgrenzwert min

Kühlen

- SpSu
- Zuluftgrenzwert max
- Zuluftgrenzwert min

Einstellwerte

<table>
<thead>
<tr>
<th>Einstellungen > Inbetriebnahme > Einstellungen ></th>
<th>Einstellungen > Regler 1 > Kaskadenregler</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Stufe 2] Wärmebedarf</td>
<td>Nein, Ja</td>
</tr>
<tr>
<td>[Stufe 2] Kältebedarf</td>
<td>Nein, Ja</td>
</tr>
</tbody>
</table>

Hinweis

Wird der Ventilator auch vom Luftqualitätsregler (siehe Kapitel 16) z. B. bei erhöhtem Aussenluftbedarf in die 2. Stufe geschaltet, so gilt der höhere Wert (Maximalauswahl).
11.7 Kaskaden-/Konstantregelung mit Umschaltung via Kask./Konst.-Umschalteingang

Raum-Zulufttemperatur-
Kaskadenregelung
(bei Heizung aus, Sommer) und
Zulufttemperaturregelung
(bei Heizung ein, Winter)

Abluft-Zulufttemperatur-
Kaskadenregelung
(bei Heizung aus, Sommer) und
Zulufttemperaturregelung
(bei Heizung ein, Winter)

Diese Regelungsart ist sinnvoll, wenn die Raumheizung z. B. mit Thermostatventilen geregelt wird und im Sommer ein Lüftungsregler den gleichen Raum kühlen soll.

11.7.1 Wirkungsweise

Während der Heizperiode (Winter- und Übergangszeit) wird die Raumtemperatur-
Regelung vom Heizungsregler übernommen. Dies kann mit einem aktiven Raumein-
fluss oder mit Thermostatventilen an den Heizkörpern erfolgen.

Der Lüftungsregler regelt die Zulufttemperatur konstant auf den Zulufttemperatur-
Sollwert (siehe Kapitel 11.2.2).

Ausserhalb der Heizperiode (im Sommer) wird die Raumtemperaturregelung vom
Lüftungsregler mit einer Raum-Zuluft-Kaskadenregelung (siehe Kapitel 11.6) oder einer
Abluft-Zuluft-Kaskadenregelung (siehe Kapitel 11.6) übernommen.

Die Umschaltung erfolgt über ein digitales Signal am Kask./Konst.-Umschalteingang.
Kontakt geschlossen: Zulufttemperaturregelung
Kontakt offen: Kaskaden-Regelung
11.8 Raumregelungskombinationen mit Heizungsregler

Regeln ein Heizungsregler und ein Lüftungsregler gemeinsam den gleichen Raum und sind am gleichen Bus angeschlossen, so haben sie die Möglichkeit untereinander Informationen auszutauschen.

Beide Regler müssen die gleiche geografische Zone eingestellt haben; beide Regler arbeiten mit der gleichen Raumbetriebsart.

Die Raumregelungskombination (siehe Kapitel 6.13.2) am Lüftungsregler ist auf Master einzustellen.

Wenn, währenddem die Heizungsanlage in Betrieb ist, gekühlt werden muss, wird die Heizung sofort ausgeschaltet. Diese kann erst wieder einschalten, wenn alle Kühlsequenzen beim Lüftungsregler geschlossen sind.

11.8.1 Regelungsart Zulufttemperaturregelung

Wenn der Lüftungsregler die Regelstrategie Zulufttemperaturregelung eingestellt hat, kann die Raumtemperaturregelung vom Heizungsregler übernommen werden (Raumseinfluss aktiviert oder Thermostatventile an den Heizkörpern).

11.8.2 Regelungsart Raum- oder Ablufttemperaturregelung

Wenn der Lüftungsregler die Regelfunktion Raumtemperaturregelung aktiviert hat, muss der Raumeinfluss beim Heizungsregler ausgeschaltet sein. Auch dürfen im Raum keine Thermostatventile an den Heizkörpern montiert sein. Beide Regler müssen die gleiche geografische Zone eingestellt haben.

Wirkungsweise

Der Lüftungsregler ist in der Betriebsart **Komfort** und **Prekomfort** für die Einhaltung der Raumtemperatur verantwortlich. Die Heizung regelt die witterungsgeführte Vorlauftemperatur. Der Lüftungsregler ist in der Betriebsart **Economy** normalerweise ausgeschaltet, die Heizung regelt die witterungsgeführte Vorlauftemperatur. Bei eingeschalteter Heizung (im Winter und in der Übergangszeit) ist die Stützfunktion "Heizen" am Lüftungsregler deaktiviert. Diese wird erst wieder freigegeben, wenn der Heizungsregler ausschaltet.

11.8.3 Raum/Zuluft- oder Abluft/Zuluft-Kaskadenregelung

Wirkungsweise

11.8.4 Regelstrategie wechselnd

Raum-Zulufttemperatur-Kaskadenregelung (bei Heizung aus, Sommer) und **Zulufttemperaturregelung** (bei Heizung ein, Winter)

Abluft-Zulufttemperatur-Kaskadenregelung (bei Heizung aus, Sommer) und **Zulufttemperaturregelung** (bei Heizung ein, Winter)

Wirkungsweise

Wenn währenddem die Heizungsanlage in Betrieb ist, gekühlt werden muss, wird die Heizung sofort ausgeschaltet. Diese kann erst wieder einschalten, wenn alle Kühlsequenzen beim Lüftungsregler geschlossen sind.
11.9 Sommer-/Winterkompensation

11.9.1 Aktivieren des Blocks

Sommer-/Winterkompensation ist aktiv, wenn eine Aussentemperatur verfügbar ist.

Einstellwerte

- **Hauptmenü > Inbetriebnahme > Einstellungen > ... oder**
- **Hauptmenü > Einstellungen > Regler 1 > Sollwerteinflüsse >**

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommerkomp.-Delta</td>
<td>0.0...+50.0 K</td>
<td>2 K</td>
</tr>
<tr>
<td>Sommerkomp.-Endpunkt</td>
<td>20.0...250.0 °C</td>
<td>30.0 °C</td>
</tr>
<tr>
<td>Sommerkomp.-Startpunkt</td>
<td>0.0...30.0 °C</td>
<td>20.0 °C</td>
</tr>
<tr>
<td>Winterkompensation-Startpunkt</td>
<td>−10.0...+20.0 °C</td>
<td>0.0 °C</td>
</tr>
<tr>
<td>Winterkompensation-Endpunkt</td>
<td>−50.0...0.0 K</td>
<td>−10.0 °C</td>
</tr>
<tr>
<td>Winterkompensation-Delta</td>
<td>−50.0...+50.0 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Anhebung Heiz-Sollwert</td>
<td>Ja, Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>

11.9.2 Wirkungsweise

Für den Temperaturregler kann der Sollwert nach der Aussentemperatur geschoben werden.
Diese Sollwertschiebung wirkt auf den Komfort- und den Prekomfort-Sollwert nach folgendem Diagramm:

Das Diagramm zeigt den Fall "Anhebung Heiz-Sollwert" auf Nein; bei Ja werden die Komfort- und Prekomfort-Sollwerte um den Wert des Sommerkompensation-Deltas angehoben, z. B. im Entfeuchtungsfall (gestrichelte Linie im Diagramm).

Anwendungsbeispiele
- Sommerkompensation, um die leichte Bekleidung der Personen zu berücksichtigen
- Winterkompensation, um die kalten Glasoberflächen im Raum zu kompensieren

11.9.3 Fehlerbehandlung

Fehlt die Aussentemperatur, so wird der Sollwert nicht geschoben.
11.10 Sollwertbegrenzungen

11.10.1 Aktivieren der Funktion

Um möglichst viel Energie zu sparen, können die Sollwerte eingegrenzt werden. Diese Funktionalität steht in den Betriebsarten Komfort und Prekomfort zur Verfügung. Die Einstellung kann nur im Regler 1, im Grundtyp A vorgenommen werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kühl-Sollwert Begrenzung</td>
<td>---, -50.0…250 °C</td>
<td>---</td>
</tr>
<tr>
<td>Heiz-Sollwert Begrenzung</td>
<td>---, -50.0…250 °C</td>
<td>---</td>
</tr>
</tbody>
</table>

11.10.2 Wirkungsweise

Mit der "Kühl-Sollwert Begrenzung" (SpCLim) und der "Heiz-Sollwert-Begrenzung" (SpHLim) wird ein minimaler bzw. maximaler Temperaturwert gesetzt. Der Grenzwert kann nicht durch andere Funktionen wie dem absoluten bzw. relativen Sollwertgeber oder der Sommer-/Winterkompensation unter- bzw. überschritten werden. Die Kühl-Sollwert Begrenzung und die Heiz-Sollwert Begrenzung sind standardmäßig deaktiviert (---°C).

Funktionsdiagramm

Hinweis

Diese Einstellung steht für die nachfolgenden Regelungsarten zur Verfügung:
- Zulufttemperaturregelung (Kapitel 11.3)
- Raum- oder Ablufttemperaturregelung (Kapitel 11.4)
- Raum- oder Ablufttemperaturregelung mit Zuluftbegrenzung (Kapitel 11.5)
- Raum/Zuluft- oder Abluft/Zuluft-Kaskadenregelung (Kapitel 11.6)
12 Zulufttemperaturregler, bedarfsgeführt (Grundtyp P)

12.1 Allgemeines

Der Regler 1 ist für die bedarfsgeführte Zulufttemperaturregelung mit VVS-Einzelraumreglern bestimmt. Der Eingang N.X1 ist fix mit dem Zulufttemperatur-Sensor verbunden. Regler 2 und Regler 3 sind Universalregler.

Es stehen folgende Regler (Sequenzregler) zur Verfügung:
- RMU710B: Regler 1
- RMU720B: Regler 1, Regler 2
- RMU730B: Regler 1, Regler 2, Regler 3

12.2 Aktivieren der Funktion

Mit der Wahl des Grundtyps ist die Konfiguration der Hauptregelgröße bereits erfolgt.

- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Regler 1 > Eingänge >

Hauptregelgröße N.X1 (nur lesbar)

12.2.1 Weiteres Vorgehen beim Konfigurieren der Regler

Folgende Hilfsfunktionen können zusätzlich aktiviert werden:
- Universalschiebung
- Allgemeinbegrenzer
- Sequenzbegrenzer
- Sequenzsperrung nach TA
- Regelungs-Timeout

Den einzelnen Sequenzen Ausgänge zuordnen

- Bei jedem Regler kann eine Abweichungsmeldung aktiviert werden
- Regelparameter Regler 1..3

12.2.2 Begrenzungen und Sollwerteinflüsse

Folgende Funktionen können auf die Zuluftsollwerte Einfluss haben:
- Universalschiebung (z. B. nach Aussentemperatur)
12.2.3 Priorität der Funktionen

Bei gleichzeitiger Aktivierung verschiedener Funktionen, welche auf den gleichen Regler wirken, gilt folgende Priorität:

1. Frostschutz
2. Sperrung der Sequenzen nach Heizen/Kühlen Umschaltung
3. Vorwärmfunktion
4. Sequenzsperrung nach TA
5. Sequenzbegrenzer
6. Allgemeinbegrenzer

12.3 Bedarfsgeführter Anlagenbetrieb

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimale Anzahl VVS</td>
<td>1…8</td>
<td>1</td>
</tr>
</tbody>
</table>

Einschaltbedingungen

Ein ineffizientes Ein- und Ausschalten der Luftaufbereitungsanlage durch einzelne VVS-Bedarfsignale ausserhalb der Nutzungszeit gemäss Schaltprogramm wird unterbunden.

Vorausgesetzte Einstellungen

- Wird die lokale Schaltuhr 1 am RMU-Regler aktiviert, muss der Wert für die „Geografische Zone (Apartment)“ eingestellt werden. Weitere Information in Kapitel 28.2.2 (Untermenü "Raum")
- Der Einstellwert "Luftverteilzone" definiert die Zugehörigkeit der Einzelraumregler zu der entsprechenden Primärluftaufbereitungsanlage. Weitere Information in Kapitel 28.2.5 (Untermenü "Verteilzonen")

Nicht kommunikative Einzelraumregler

Für nicht kommunikative Einzelraumregler (nicht KNX-fähig) steht am RMU-Regler ein Anforderungseingang zur Verfügung.

Wird für solche Einzelraumregler ein Anforderungseingang konfiguriert (siehe Kapitel 6.6), wird die Zulufttemperaturregelung mit konstanten Sollwerten betrieben.
12.4 Bedarfsgeführte Zulufttemperaturregelung

Funktionsprinzip

Anlagenebene:

Bussignalebene:

Sollwert-Ermittlung

Der Zulufttemperatur-Sollwert wird innerhalb der Grenzen "Zuluftgrenzwert min" und "Zuluftgrenzwert max" ausgehend von Startwerten und unter Einhaltung von Grenz- und Übergangsbereichen linear zu den Bedarfssignalen ermittelt.

Hinweis

Die Startwerte der Zulufttemperatur-Sollwertoptimierung werden aufgrund der Aussentemperatur berechnet, um den Zulufttemperatur-Sollwert schneller zu erreichen.

Optimierung Sollwert

- Sind die Einzelraumregler im Heizbetrieb, wird der Zulufttemperatur-Sollwert nach dem aktuellen Bedarf angehoben; bis zum Maximalwert "Zuluftgrenzwert max".
- Sind die Einzelraumregler im Kühlbetrieb, wird der Zulufttemperatur-Sollwert nach dem aktuellen Bedarf reduziert; bis zum Minimalwert "Zuluftgrenzwert min".

Hinweis

Es gilt der Grundsatz: Kühlen hat Priorität vor Heizen d.h. tritt gleichzeitig ein Wärme- und ein Kältebedarfssignal auf, wird das Wärmebedarfssignal ignoriert.

Einstellwerte

- Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
- Hauptmenü > Einstellungen > Regler 1 > Sollwerte
- Hauptmenü > Regler 1 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluftgrenzwert min</td>
<td>-50°C...Zuluftgrenzwert max</td>
<td>15 °C</td>
</tr>
<tr>
<td>Zuluftgrenzwert max</td>
<td>Zuluftgrenzwert min ... 250°C</td>
<td>26 °C</td>
</tr>
</tbody>
</table>
Einstellwerte

- Hauptmenü > Inbetriebnahme > Einstellungen > ...
or
- Hauptmenü > Einstellungen > Regler 1 > Sollwerte >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelverhalten</td>
<td>Langsam, Mittel, Schnell</td>
<td>Mittel</td>
</tr>
<tr>
<td>Auswertung Anforderung</td>
<td>Maximal, Durchschnitt</td>
<td>Maximal</td>
</tr>
<tr>
<td>Anfahrrampe</td>
<td>00.00...59.55 m:s</td>
<td>20 min</td>
</tr>
</tbody>
</table>

Regelverhalten

Die Geschwindigkeit, mit der die Optimierung der Zuluftsollwerte erfolgt, kann mit dem Einstellparameter "Regelverhalten" definiert werden.

Auswertung Anforderung

Auch kann die Art, wie die Auswertung des Bedarfsignals erfolgen soll, eingestellt werden.
- Maximal: Für die Schiebung wird nur das größte Wärme- oder Kältebedarfssignal berücksichtigt
- Durchschnitt: Für die Schiebung werden alle Wärme- oder Kältebedarfssignale als Durchschnittswert berücksichtigt.

Anfahrrampe

Die Anfahrrampe dient als Übergangszeit zum Sammeln von repräsentativen Bedarfssignalen, die zur Berechnung der Sollwerte ("Zuluft-Kühlsollwert aktuell", "Zuluft-Heizsollwert aktuell") erforderlich sind. Empfohlene Werte für die Anfahrrampe sind in Abhängigkeit des Regelverhaltens:

<table>
<thead>
<tr>
<th>Regelverhalten</th>
<th>Anfahrrampe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langsam</td>
<td>50 min</td>
</tr>
<tr>
<td>Mittel</td>
<td>20 min</td>
</tr>
<tr>
<td>Schnell</td>
<td>10 min</td>
</tr>
</tbody>
</table>

Hinweis

Eine zusätzliche Universalschiebung ist hier möglich. Sie wirkt übergeordnet zur bedarfsgeführten Optimierung und kann die Zulufttemperatur-Sollwerte über bzw. unter den Zuluftgrenzwert max / min schieben.

Anzeigewerte

- Hauptmenü > Regler 1 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zulufttemperatur-Istwert</td>
</tr>
<tr>
<td>Zulufttemperatur-Sollwert akt</td>
</tr>
</tbody>
</table>

Zu Diagnosezwecken kann in der Passwortebene der aktuelle Zuluft-Kühl- und Heizsollwert angeschaut werden.
Zu Diagnosezwecken wird der momentane Energiebedarf Wärme und Kälte von der Einzelraumregelung angezeigt.

Wenn ein Anforderungseingang für die Anlagenbetriebartwahl konfiguriert wurde, werden die Bedarfssignale auf 0% gesetzt und die Funktion wird deaktiviert. Siehe Kapitel 6.6.

12.5 Fehlerbehandlung

Fehlt die Zulufttemperatur, so wird die Anlage ausgeschaltet und eine Störungsmeldung "[Hauptreg'grösse 1] Fühlerfehler" wird ausgelöst.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3011</td>
<td>[Hauptreg'grösse 1] Fühlerfehler</td>
<td>Dringende Meldung, mit Anlagenstopp; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>
13 Vorlauftemperaturregler, bedarfsgeführt (Grundtyp C)

13.1 Allgemeines

Der Regler 1 im Grundtyp C ist für die bedarfsgeführte Vorlauf-Temperaturregelung (Kaltwasser) reserviert. Der Eingang N.X1 ist fix mit dem Vorlauf-Temperaturfühler verbunden. Regler 2 und Regler 3 sind Universalregler.

Es stehen folgende Regler (Sequenzregler) zur Verfügung:
- **RMU710B**: Regler 1
- **RMU720B**: Regler 1, Regler 2
- **RMU730B**: Regler 1, Regler 2, Regler 3

13.2 Aktivieren der Funktion

Mit der Wahl des Grundtyps ist die Konfiguration der Hauptregelgröße bereits erfolgt.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Regler 1 > Eingänge >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptregelgröße</td>
<td>N.X1 (nur lesbar)</td>
</tr>
</tbody>
</table>

13.2.1 Weiteres Vorgehen beim Konfigurieren der Regler

Handlungsschritt	**Hinweise in…**
Regelungsart festlegen:
- Kaltwasser-Vorregelung | Kapitel 13.3
- Vorregelung für 2-Rohr-Systeme | Kapitel 13.4

 Folgende Hilfsfunktionen können zusätzlich aktiviert werden:
- Universalschiebung | Kapitel 15.6
- Allgemeinbegrenzer | Kapitel 15.2
- Sequenzbegrenzer | Kapitel 15.3
- Sequenzsperrung nach TA | Kapitel 15.4
- Regelungs-Timeout | Kapitel 15.8

- den einzelnen Sequenzen Ausgänge zuordnen | Kapitel 15.1.3
- Bei jedem Regler kann eine Abweichungsmeldung aktiviert werden | Kapitel 15.7
- Regelparameter Regler 1..3 | Kapitel 15.1.4
13.2.2 Begrenzungen und Sollwerteinflüsse

Folgende Funktion kann auf die Sollwerte Einfluss haben:

- Universalschiebung

13.2.3 Priorität der Funktionen

Bei gleichzeitiger Aktivierung verschiedener Funktionen, welche auf den gleichen Regler wirken, gilt folgende Priorität:

1. Sperrung der Sequenzen nach Heizen/Kühlen Umschaltung
2. Vorwärmfunktion
3. Sequenzsperrung nach TA
4. Sequenzbegrenzer
5. Allgemeinbegrenzer

13.3 Kaltwasser-Vorregelung

Wird der Regler RMU7..B zur Kaltwasser-Vorregelung eingesetzt, so können die nachgeschalteten Regelkreise ihr Kältebedarfssignal über den Bus der Vorregelung senden. Der Regler RMU7..B kann diese Signale empfangen und auswerten und so auf eine für den Betrieb optimale Vorlauftemperatur regeln.

Parallel dazu kann auch ein digitales Signal von Geräten ohne Kommunikation empfangen und ausgewertet werden (siehe Kapitel 6.6 "Anlagenbetriebsartwahl über Anforderungseingang (Grundtyp P, C)").

13.4 Vorregelung für 2-Rohr-System (H/K) mit Sommer/Winter-Umschaltung

Wird der Regler RMU7..B zur Vorregelung für ein 2-Rohr-System eingesetzt, so können die nachgeschalteten Regelkreise ihr Wärme-/ und Kältebedarfssignal über den Bus an die Vorregelung senden. Der Regler RMU7..B kann diese Signale empfangen und auswerten und so auf eine für den Betrieb optimale Vorlauftemperatur regeln.

Um den Regler als Warm-/Kaltwasserregler zu aktivieren, muss der Regler als 2-Rohr-System Heizen/Kühlen konfiguriert werden (siehe Kapitel 27 "Heizen/Kühlen Umschaltung").
13.5 Sollwerte

Es können ein "Kaltwasservorlauf-Sollwert" und eine "VL Erhöhung maximal" eingestellt werden. Bei 2-Rohr-Systemen kann zusätzlich ein "Heizungsvorlauf-Sollwert" und eine "VL Reduktion maximal" eingestellt werden. Beide Funktionen sind defaultmässig ausgeschaltet (= 0 K).

Funktionsdiagramm

Über die Universalschiebung kann der "Kaltwasservorlauf-Sollwert" geschoben werden.

Funktionsdiagramm

Einstellwerte

Anzeigewerte

<table>
<thead>
<tr>
<th>Hauptmenü</th>
<th>Inbetriebnahme > Einstellungen > ... oder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hauptmenü > Einstellungen > Regler 1 > Sollwerte ></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizungsvorlauf-Sollwert</td>
<td>-50...250°C</td>
<td>40 °C</td>
</tr>
<tr>
<td>VL Reduktion maximal</td>
<td>0...100 K</td>
<td>0 K</td>
</tr>
<tr>
<td>Kaltwasservorlauf-Sollwert</td>
<td>-50...250°C</td>
<td>6 °C</td>
</tr>
<tr>
<td>VL Erhöhung maximal</td>
<td>0...100 K</td>
<td>0 K</td>
</tr>
</tbody>
</table>

1) Nur vorhanden bei Konfiguration 2-Rohr-System

184/328
13.6 Anforderungssignale

13.6.1 Mögliche Kaltwasser-Anforderungssignale

Je nach nachgeschaltetem Regelkreis können folgende Anforderungssignale empfangen werden:
- Ventilstellung (z. B. von einer Regelung RMU7..B als Grundtyp A für eine Luftaufbereitungsanlage mit Luftkühler) über den Bus
- Kältebedarf in % (z. B. von einer Einzelraumregelung "Luftkühler") über den Bus
- Kältebedarf in °C (z. B. von einer nachgeschalteten Kaltwassertemperaturregelung RMU7..B als Grundtyp C) über den Bus
- Kältebedarf als digitaler Eingang (siehe Kapitel 6.6 "Anlagenbetriebsartwahl über Anforderungseingang (Grundtyp P, C)"

Alle diese Signale können parallel verarbeitet werden.

Anforderungssignal "Ventilstellung in %"

Dieses Anforderungssignal kann von einem Reglers Signal kann von einer beliebigen Anzahl Regler empfangen werden.

Die einzige Bedingung ist, dass bei allen die gleiche Kaltwasserverteilzone eingestellt ist. Bei 2-Rohr-Systemen muss auch die gleiche Warmwasserverteilzone eingestellt sein.

Über die Anforderungssignale wird eine Maximalauswahl getroffen. Die Art der Maximalauswahl ist einstellbar:
- Maximal: Für die Schiebung wird nur das Signal berücksichtigt, das am grössten ist
- Durchschnitt: Für die Schiebung werden die 4 grössten Signale berücksichtigt. Diese 4 Werte werden gemittelt

Der Regler regelt die Ventilstellung auf 90 %, indem die Vorlauftemperatur ausgehend vom eingestellten "Kaltwasservorlauf-Sollwert" um die eingestellte "VL Erhöhung maximal" angehoben wird.

Das Regelverhalten kann der Anlage angepasst werden. Folgende Einstellungen sind möglich:
- Langsam
- Mittel
- Schnell

Kälteanforderungssignal in °C

Wird das Anforderungssignal nur als Ein-/ und Ausschaltbefehl des Vorreglers genutzt, kann ein Kaltwasservorlauf-Sollwert vorgegeben werden, zusätzlich kann dieser Sollwert mit der Universalschiebung geschoben werden, der Einstellwert "VL Erhöhung maximal" muss auf "0 K" gesetzt werden.
Anforderungseingang

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Betriebsart >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anforderungseingang</td>
<td>---, N.X1, N.X2, ... (nur digitale oder analoge Werte)</td>
</tr>
</tbody>
</table>

Steht am digitalen Eingang eine Anforderung an, so wird der Sollwert auf den unter "Sollwerte" (Kap.13.5) eingestellten Wert gefordert.

Die Einstellungen sind im Kapitel 6.6 "Anlagenbetriebsartwahl über Anforderungseingang (Grundtyp P, C)" beschrieben.

Die Einstellung "VL Erhöhung maximal" ist wirkungslos, der errechnete Sollwert wird von der Universalschiebung zusätzlich geschoben.

13.6.2 Mögliche Warmwasser-Anforderungssignale

Je nach nachgeschaltetem Regelkreis können folgende Anforderungssignale empfangen werden:
- Ventilstellung (z. B. von einer Regelung RMU7..B als Grundtyp A für eine Luftaufbereitungsanlage mit Lufterwärmer) über den Bus
- Wärmebedarf in % (z. B. von einer Einzelraumregelung "RXB mit Heizregister") über den Bus
- Wärmebedarf in °C (z. B. von einem Heizungsregler oder Wohnungszentrale) über den Bus
- Bedarf als digitaler Eingang (siehe Kapitel 6.6 "Anlagenbetriebsartwahl über Anforderungseingang (Grundtyp P, C)"

Alle diese Signale können parallel verarbeitet werden.

Für die Beschreibung des Anforderungssignals "Ventilstellung in %" und des Anforderungseingangs siehe Analog Kapitel 13.6.1.

Wärmeanforderungssignal in °C

Wird das Anforderungssignal nur als Ein-/und Ausschaltbefehl des Vorreglers genutzt, kann ein Heizungsvorlauf-Sollwert vorgegeben werden, zusätzlich kann dieser Sollwert mit der Universalschiebung geschoben werden, der Einstellwert "VL Reduktion maximal" muss auf "0 K" gesetzt werden.
13.7 Anwendungsbeispiele

Anwendungsbeispiel 1

Der Kaltwasservorlauf soll je nach Bedarf auf einen Wert zwischen 6 °C bis max. 20 °C geregelt werden.

Einstellungen:
- Kaltwasservorlauf-Sollwert = 6 °C
- VL Erhöhung maximal = 14 K
- keine Sollwertführung

Anwendungsbeispiel 2

Einstellungen:
- Kaltwasservorlauf-Sollwert = 8 °C
- VL Erhöhung maximal = 0 K
- Sollwertführung nach Außenluft-Feuchte absolut (mit Enthalpierechner SEZ220 oder RMS705B):
 - [w-Führung 1] Delta = 10 K
 - [w-Führung 1] Start = 6 g/kg
 - [w-Führung 1] Endp = 13 g/kg
 - [w-Führung 2] Delta = 0 K

13.8 Fehlerbehandlung

Fehlt die VL-Temperatur, so wird die Anlage ausgeschaltet und eine Störungsmeldung [Hauptreg'grösse 1] Fühlerfehler wird ausgelöst.

Wenn ein Heizen-/Kühlen-Umschaltsignal vom Bus erwartet wird und dieses nicht gesandt wird, wird eine Störungsmeldung generiert und die Anlage wird auf Heizbetrieb gestellt.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3011</td>
<td>[Hauptreg'grösse 1] Fühlerfehler</td>
<td>Dringende Meldung, mit Anlagenstopp; muss nicht quittiert werden</td>
</tr>
<tr>
<td>5801</td>
<td>H/K Umschaltsignalausfall</td>
<td>Dringende Meldung, muss nicht quittiert werden</td>
</tr>
</tbody>
</table>
14 Universalregler (Grundtyp A, P, C, U)

14.1 Allgemeines

Der Universalregler kann für Regler 1 im Grundtyp U und für Regler 2 und 3 bei allen Grundtypen aktiviert werden. Der Regler wird aktiviert, indem der Hauptregelgröße ein Eingang zugeordnet wird.

Der Universalregler kann auf eine absolute Größe oder auf eine Differenzgröße regeln.

Es stehen folgende Regler (Sequenzregler) zur Verfügung:
- RMU710B: Regler 1
- RMU720B: Regler 1, Regler 2
- RMU730B: Regler 1, Regler 2, Regler 3

14.2 Aktivieren der Funktion

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Regler 1..3 > Eingänge >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptregelgröße</td>
<td>---, N.X1, N.X2, ... (nur analoge Werte) / Aktivieren der Hauptregelgröße</td>
</tr>
<tr>
<td>Hauptregelgröße</td>
<td>---, N.X1, N.X2, Sollwert 1 ... (nur analoge Werte) / Aktivieren einer Differenzregelung</td>
</tr>
</tbody>
</table>

Je nach gewünschter Funktion müssen folgende Einstellungen vorgenommen werden:

<table>
<thead>
<tr>
<th>Gewünschte Regelung</th>
<th>Bedienzeile</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelung auf einen Fühlereingang</td>
<td>Hauptregelgröße, Differenzeingang</td>
<td>Xx (analog)</td>
</tr>
<tr>
<td>Differenzregelung</td>
<td>Hauptregelgröße, Differenzeingang</td>
<td>Xx (analog) / Xx (gleiche Einheit wie Hauptregelgröße)</td>
</tr>
</tbody>
</table>

Im Sequenzregler wird immer mit der gleichen Einheit gearbeitet, wie die Hauptregelgröße (z. B. Hauptregelgröße ist die Raumtemperatur: Einheit °C).

Beim Regler 2 und 3 kann der Sollwert des Reglers 1 als Differenzeingang konfiguriert werden. So ist es möglich, dass z. B. der Regler 2 als Differenzregler zum Regler 1 eingesetzt wird.
Eine Fehlkonfiguration bewirkt folgendes:

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellung</th>
<th>Eingriffsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptregelgröße</td>
<td>---</td>
<td>Regler nicht aktiv</td>
</tr>
<tr>
<td>Differenzeingang</td>
<td>(nicht relevant)</td>
<td></td>
</tr>
</tbody>
</table>
| Hauptregelgrößse | Xx (digital) | Meldung "[Hauptreg'grösse 1]
| Differenzeingang | (nicht relevant) | Fühlerfehler" wird abgesetzt |
| Hauptregelgrößse | Xx (analog) | Reglung auf absolute Grösse |
| Differenzeingang | Xx (nicht gleiche Einheit wie Hauptregelgrösse) | |

14.2.1 Wirkungsweise

Die Hauptregelgröße wird mit einer PID-Regelung auf den eingestellten Sollwert geregelt.

14.2.2 Sollwerte

Regler 2+3 Grundtyp A; Regler 1+2+3 Grundtyp U:
Für die Betriebsarten ☎: Komfort und ⚡: Prekomfort können eigene Sollwerte vorgegeben werden.

Regler 2+3 Grundtyp C und Grundtyp P:
Nur der Betriebsart ☎: Komfort können Sollwerte vorgegeben werden.
Es wird unterschieden zwischen:
- Heiz-Sollwerten (Sequenz 1+2+3)
- Kühl-Sollwerten (Sequenz 4+5)
Folgende Funktionen können auf die Sollwerte Einfluss haben:
- Universalschiebung (siehe Kapitel 15.6)
- Fernsollwertgeber absolut (siehe Kapitel 8.7)

Einstellwerte

- Hauptmenü > Inbetriebnahme > Einstellungen > oder
- Hauptmenü > Einstellungen > Regler 1...3 > Sollwerte >
- Hauptmenü > Regler 1...3 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚡: Prekomfort-Sollwert</td>
<td>28 °C, 28 K, 80 %, 12 g/kg, 50 kJ/kg, 1000 W/m², 15 m/s, 100 bar, 1000 mbar, 1000 Pa, 1500 ppm, 100, 1000</td>
</tr>
<tr>
<td>oben</td>
<td></td>
</tr>
<tr>
<td>☎: Komfort-Sollwert</td>
<td>24 °C, 25 K, 60 %, 10 g/kg, 30 kJ/kg, 800 W/m², 15 m/s, 100 bar, 1000 mbar, 1000 Pa, 1000 ppm, 100, 1000</td>
</tr>
<tr>
<td>oben</td>
<td></td>
</tr>
<tr>
<td>☎: Komfort-Sollwert</td>
<td>21 °C, 21 K, 40 %, 6 g/kg, 20 kJ/kg, 600 W/m², 15 m/s, 6 bar, 60 mbar, 400 Pa, 60 ppm, 600</td>
</tr>
<tr>
<td>unten</td>
<td></td>
</tr>
<tr>
<td>⚡: Prekomfort-Sollwert</td>
<td>19 °C, 19 K, 20 %, 4 g/kg, 0 kJ/kg, 200 W/m², 0 m/s, 0 bar, 0 mbar, 0 Pa, 0 ppm, 0</td>
</tr>
<tr>
<td>unten</td>
<td></td>
</tr>
</tbody>
</table>
14.2.3 Fehlerbehandlung

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3011</td>
<td>[Hauptregelgröße 1]</td>
<td>Dringende Meldung, mit Anlagenstopp; muss nicht quittiert werden</td>
</tr>
<tr>
<td>3012</td>
<td>[Hauptregelgröße 2]</td>
<td>Dringende Meldung, mit Anlagenstopp; muss nicht quittiert werden</td>
</tr>
<tr>
<td>3013</td>
<td>[Hauptregelgröße 3]</td>
<td>Dringende Meldung, mit Anlagenstopp; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>
15 Sequenzregler

15.1 Aufbau des Sequenzreglers

Der Sequenzregler wird aktiviert, indem ihm eine Hauptregelgröße zugeordnet wird. Die dazu nötigen Einstellungen sind in den Kapiteln 11, 12, 13 und 14 beschrieben.

Regler 1

Der Regler 1 kann maximal 5 Sequenzen in folgenden Kombinationen enthalten:
- Eine Sequenz: Sequenz 1 oder Sequenz 4
- Zwei Sequenzen: Sequenz 1+2, oder Sequenz 1+4, oder Sequenz 4+5
- Drei Sequenzen: Sequenz 1+2+3, oder Sequenz 1+2+4, oder Sequenz 1+4+5
- Vier Sequenzen: Sequenz 1+2+3+4, oder Sequenz 1+2+4+5
- Fünf Sequenzen: Sequenz 1+2+3+4+5

Der "Heiz"-Sollwert ist den zusammenhängenden Sequenzen 1, 2 und 3 zugeordnet. Ihr Ausgangssignal wirkt umgekehrt zur Last (Eingangsgröße), z. B. Heizen. Der "Kühl"-Sollwert ist den zusammenhängenden Sequenzen 4 und 5 zugeordnet. Ihr Ausgangssignal wirkt direkt zur Last (Eingangsgröße), z. B. Kühlen.

Regler 2+3

Regler 2+3 können maximal 3 Sequenzen in folgenden Kombinationen enthalten:
- Eine Sequenz: Sequenz 1 oder Sequenz 4
- Zwei Sequenzen: Sequenz 1+2, oder Sequenz 1+4
- Drei Sequenzen: Sequenz 1+2+4

Der "Heiz"-Sollwert ist den zusammenhängenden Sequenzen 1 und 2 zugeordnet. Ihr Ausgangssignal wirkt umgekehrt zur Last (Eingangsgröße), z. B. Heizen. Der "Kühl"-Sollwert ist der Sequenz 4 zugeordnet. Ihr Ausgangssignal wirkt direkt zur Last (Eingangsgröße), z. B. Kühlen.

15.1.1 Zuordnung der Aggregate zu den Sequenzen

Jeder Sequenz kann zugeordnet werden:
- 1 Lastausgang
- 1 Pumpenausgang

Hinweis

Eine Sequenz wird aktiviert, indem ihr entweder ein Lastausgang oder ein Pumpenausgang zugeordnet wird. Wird einer Sequenz weder das eine noch das andere zugeordnet, sind diese Sequenz und alle darauf folgenden Sequenzen inaktiv.

15.1.2 Lastausgänge

Lastausgänge sind:
- Stetiger Ausgang A...D
- Wärmerückgewinner
- Mischluftklappe
- Stufenschalter 1...5

Jeder Sequenz kann nur ein Lastausgang zugeordnet werden. Jeder Lastausgang kann aber von maximal zwei bis 3 Sequenzen (je nach Funktionsblock) angesteuert werden.
Der Sequenzregler ist nicht geeignet, mehr Kühlleistung durch die 2. Ventilatorstufe zu bewirken, weil die Zulufttemperaturbegrenzung die Sequenzen übersteuert! Eine 2. Stufe für den Raumtemperaturregler kann aber beim Kaskadenregler direkt eingegeben werden (siehe Kapitel 11.6.3).

15.1.3 Pumpenausgänge

Jeder Sequenz kann nur eine Pumpe zugeordnet werden. Jede Pumpe kann aber von maximal zwei Sequenzen angesteuert werden.

15.1.4 Regelparameter (P-Bänder, Nachstellzeiten)

Jeder konfigurierten Sequenz kann ein P-Band (Xp), eine Nachstellzeit (Tn) und eine Vorhaltezeit (Tv) eingestellt werden.

Nachstellzeit Tn = 00:00: Der weist ein P- oder PD-Verhalten auf.

Vorhaltezeit Tv = 00:00: Der Regler weist ein P- oder PI-Verhalten auf.

Für eine schnelle Inbetriebnahme des Reglers wird folgendes empfohlen:

- die Nachstellzeit Tn des Reglers gleich der größten Zeitkonstante der Regelstrecke
- die Vorhaltezeit Tv des Reglers gleich der Zeitkonstante des Messfühlers einstellen

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sequenz 1] Xp</td>
<td>30 K</td>
<td></td>
</tr>
<tr>
<td>[Sequenz 1] Tn</td>
<td>00.00...59.55 m:s</td>
<td>03.00 m:s</td>
</tr>
<tr>
<td>[Sequenz 1] Tv</td>
<td>00.00...59.55 m:s</td>
<td>00.00 m:s</td>
</tr>
<tr>
<td>[Sequenz 2] Xp</td>
<td>30 K</td>
<td></td>
</tr>
<tr>
<td>[Sequenz 2] Tn</td>
<td>00.00...59.55 m:s</td>
<td>03.00 m:s</td>
</tr>
<tr>
<td>[Sequenz 2] Tv</td>
<td>00.00...59.55 m:s</td>
<td>00.00 m:s</td>
</tr>
<tr>
<td>[Sequenz 3] Xp</td>
<td>30 K</td>
<td></td>
</tr>
<tr>
<td>[Sequenz 3] Tn</td>
<td>00.00...59.55 m:s</td>
<td>03.00 m:s</td>
</tr>
<tr>
<td>[Sequenz 3] Tv</td>
<td>00.00...59.55 m:s</td>
<td>00.00 m:s</td>
</tr>
<tr>
<td>[Sequenz 4] Xp</td>
<td>30 K</td>
<td></td>
</tr>
<tr>
<td>[Sequenz 4] Tn</td>
<td>00.00...59.55 m:s</td>
<td>03.00 m:s</td>
</tr>
<tr>
<td>[Sequenz 4] Tv</td>
<td>00.00...59.55 m:s</td>
<td>00.00 m:s</td>
</tr>
<tr>
<td>[Sequenz 5] Xp</td>
<td>30 K</td>
<td></td>
</tr>
<tr>
<td>[Sequenz 5] Tn</td>
<td>00.00...59.55 m:s</td>
<td>03.00 m:s</td>
</tr>
<tr>
<td>[Sequenz 5] Tv</td>
<td>00.00...59.55 m:s</td>
<td>00.00 m:s</td>
</tr>
</tbody>
</table>

¹) nur im Regler 1 vorhanden
Als Richtwerte sollen folgende Einstellungen vorgenommen werden:

- **Kaskadenregler:**
 - RaumEinfluss-Xp = 4 K
 - RaumEinfluss-Tn = 10.00 m:s

- **Regelparameter Sequenzregler (je nach angeschlossenem Aggregat):**
 - Lufterwärmere (oder Vorwärmer):
 - [S...] Xp = 30.0 K
 - [S...] Tn = 03.00 m:s
 - [S...] Tv = 00.00 m:s
 - Nachwärmer:
 - [S...] Xp = 15.0 K
 - [S...] Tn = 02.00 m:s
 - [S...] Tv = 00.00 m:s
 - Luftkühler:
 - [S...] Xp = 15.0 K
 - [S...] Tn = 02.00 m:s
 - [S...] Tv = 00.00 m:s
 - Wärmerückgewinner:
 - [S...] Xp = 15.0 K
 - [S...] Tn = 02.00 m:s
 - [S...] Tv = 00.00 m:s
 - Mischluftklappe:
 - [S...] Xp = 15.0 K
 - [S...] Tn = 02.00 m:s
 - [S...] Tv = 00.00 m:s

- **Befeuchtung und Entfeuchtung mit Raumfeuchtefühler:**
 - Luftbefeuchter:
 - [S...] Xp = 40 %
 - [S...] Tn = 04.00 m:s
 - [S...] Tv = 00.00 m:s
 - Luftentfeuchter (mit Luftkühler):
 - [S...] Xp = 20 %
 - [S...] Tn = 10.00 m:s
 - [S...] Tv = 00.00 m:s

Maximalbegrenzung Zuluftfeuchte (mit Sequenzbegrenzung):
- Grenzwert = 85 %
- P-Band Xp = 10 %
- Nachstellzeit Tn = 00.00 m:s

Anzeigewerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sequenz 1 _]</td>
<td>Anzeige des aktuellen Ausganges des Sequenzreglers in 0...100 %, inkl. Frost und Begrenzungssignale!</td>
</tr>
<tr>
<td>[Sequenz 2 .._]</td>
<td>Anzeige des aktuellen Ausganges des Sequenzreglers in 0...100 %, inkl. Frost und Begrenzungssignale!</td>
</tr>
<tr>
<td>[Sequenz 3 \]</td>
<td>Anzeige des aktuellen Ausganges des Sequenzreglers in 0...100 %, inkl. Frost und Begrenzungssignale!</td>
</tr>
<tr>
<td>[Sequenz 4 _/]</td>
<td>Anzeige des aktuellen Ausganges des Sequenzreglers in 0...100 %, inkl. Frost und Begrenzungssignale!</td>
</tr>
<tr>
<td>[Sequenz 5 _.. /]</td>
<td>Anzeige des aktuellen Ausganges des Sequenzreglers in 0...100 %, inkl. Frost und Begrenzungssignale!</td>
</tr>
</tbody>
</table>

¹) nur im Regler 1 vorhanden
15.1.5 Fehlerbehandlung

Konfigurationsfehler

Wurden zu den Regelsequenzen keine Aggregate konfiguriert, dann wird der "Sollwert aktuell" mit "---" angezeigt.

Fehler im Betrieb
Fehlt dem Regler die Hauptregelgröße (z. B. bei einem Kabelbruch), wird die Anlage ausgeschaltet und eine Störungsmeldung wird ausgelöst.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3011</td>
<td>[Hauptreg'grösse 1] Fühlerfehler</td>
<td>Dringende Meldung, mit Anlagenstopp; muss nicht quittiert werden</td>
</tr>
<tr>
<td>3012</td>
<td>[Hauptreg'grösse 2] Fühlerfehler</td>
<td>Dringende Meldung, mit Anlagenstopp; muss nicht quittiert werden</td>
</tr>
<tr>
<td>3013</td>
<td>[Hauptreg'grösse 3] Fühlerfehler</td>
<td>Dringende Meldung, mit Anlagenstopp; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>
15.2 Allgemeinbegrenzer

Es kann eine allgemeine Begrenzungsfunktion gewählt werden.

15.2.1 Aktivieren der Funktion

Um diese Funktion zu aktivieren, muss der Funktion ein Eingang zugeordnet werden. Sind gleichzeitig andere Einflüsse auf den Allgemeinbegrenzer aktiv, gilt die Prioritätsreihenfolge wie im Kapitel 11.1.3 "Priorität der Funktionen" beschrieben.

Hinweis
Der Allgemeinbegrenzer ist im Grundtyp A beim Regler 1 nicht aktivierbar, dort steht der Zuluftbegrenzer zur Verfügung.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Regler 1...3 > Eingänge >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeinbegrenzregler</td>
<td>---, N.X1, N.X2, ... (nur analoge Werte) / Aktivieren der allgemeinen Begrenzung</td>
</tr>
</tbody>
</table>

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder

Hauptmenü > Einstellungen > Regler 1...3 > Allgemeinbegrenzer >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grenzwert oben</td>
<td>35.0 °C</td>
<td></td>
</tr>
<tr>
<td>Grenzwert unten</td>
<td>16.0 °C</td>
<td></td>
</tr>
<tr>
<td>Differenz oben</td>
<td>0...100 K</td>
<td>50 K</td>
</tr>
<tr>
<td>Differenz unten</td>
<td>0...100 K</td>
<td>50 K</td>
</tr>
<tr>
<td>Reduktion Min-Begrenz. Kühlen</td>
<td>0...10 K</td>
<td>0.0 K</td>
</tr>
<tr>
<td>P-Band Xp</td>
<td></td>
<td>15 K, 10 %, 5 g/kg, 10 kJ/kg, 100 W/m2, 50 m/s, 10 bar, 50 mbar, 50 Pa, 400 ppm, 10.0, 50</td>
</tr>
<tr>
<td>Nachstellzeit Tn</td>
<td>00.00...59.55 m:s</td>
<td>02.00 m:s</td>
</tr>
</tbody>
</table>

Anzeigewerte

Hauptmenü > Regler 1...3 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeinbegrenzer-Istwert</td>
<td></td>
</tr>
</tbody>
</table>

15.2.2 Wirkungsweise

Beim Überschreiten- oder Unterschreiten des Begrenzungs-Sollwertes übersteuert die Begrenzungsfunktion mit PI-Verhalten die normale Regelfunktion, um den Begrenzungs-Sollwert einzuhalten.

Es kann eine absolute Begrenzung und eine relative Begrenzung eingegeben werden. Wird nur eine dieser Funktionen gewünscht, kann die andere Funktion deaktiviert werden, indem die Sollwerte weit aussen gesetzt werden.
Allgemeinbegrenzung absolut

Es kann je ein Sollwert für eine Maximal- und Minimalbegrenzung eingegeben werden.

Anwendungsbeispiel

![Diagram](image)

Spezialfall

Ist die Kühlsequenz 4+5 aktiv, kann die Minimalbegrenzung um einen einstellbaren Wert tiefer eingestellt werden. So kann verhindert werden, dass bei einer stufenlosen (direkt) Kühlung die Kältemaschine kurz nach dem Einschalten sofort wieder ausschaltet. Diese Funktion ist nur aktiv, wenn die Hauptregelgröße und der Eingang für die allgemeine Begrenzung die Einheit °C aufweist.

Allgemeinbegrenzung relativ

Die Maximal- und Minimal-Differenzbegrenzung kann nur aktiviert werden, wenn die Hauptregelgröße und der Allgemeinbegrenzer mit der gleichen Einheit konfiguriert wurden.

Die eingestellten Begrenzungs-Sollwerte beziehen sich auf die Differenz (z. B. Temperatur) zwischen der Hauptregelgröße und dem Allgemeinbegrenzer.

![Diagram](image)

Es kann je ein Sollwert für eine Maximal- und Minimal-Temperaturdifferenzbegrenzung eingegeben werden.
15.2.3 Fehlerbehandlung

Wenn das Inbetriebnahmemenü verlassen wird, wird überprüft, ob am Eingang ein Fühler angeschlossen ist. Ist der Fühler zu diesem Zeitpunkt angeschlossen und fehlt er später, wird eine Störungsmeldung "Fühlerfehler X.." erzeugt. Fehlt der Begrenzungsfühler, ist die Begrenzung inaktiv gesetzt.
15.3 Sequenzbegrenzer

Mit dieser Funktion können einzelne Sequenzen begrenzt werden.

15.3.1 Aktivieren der Funktion

Diese Funktion wird aktiviert, indem für den Regler ein Eingang konfiguriert wird. Es können nur analoge Eingänge (siehe Kap. 0 "Analoge Eingänge") zugeordnet werden. Diese Funktion kann pro Regler nur einmal aktiviert werden.

Konfiguration

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequenzbegrenzregler</td>
<td>--, N.X1, N.X2, ... (nur analoge Werte) / Aktivieren der Sequenzbegrenzung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begrenzungsart</td>
<td>Minimal, Maximal</td>
<td>Minimal</td>
</tr>
<tr>
<td>Sequenzenauswahl</td>
<td>Sequenz 1, Sequenz 2, Sequenz 3, Sequenz 4, Sequenz 5</td>
<td>Sequenz 1</td>
</tr>
<tr>
<td>Grenzwert</td>
<td>1 °C, 80 %, 12 g/kg, 70 kJ/kg, 1500 W/m², 10 m/s, 40 bar, 500 mbar, 1000 Pa, 2000 ppm, 100.0, 1000</td>
<td></td>
</tr>
<tr>
<td>P-Band Xp</td>
<td>10 K, 10 %, 5 g/kg, 10 kJ/kg, 100 W/m², 50 m/s, 10 bar, 50 mbar, 50 Pa, 400 ppm, 10.0, 50</td>
<td></td>
</tr>
<tr>
<td>Nachstellzeit Tn</td>
<td>00.00...59.55 m:s</td>
<td>01.00 m:s</td>
</tr>
</tbody>
</table>

Anzeigewerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequenzbegrenzer-Istwert</td>
<td></td>
</tr>
</tbody>
</table>

Sind gleichzeitig andere Einflüsse auf den Sequenzbegrenzer aktiv, gilt die Prioritätsreihenfolge wie im Kapitel 11.1.3 "Priorität der Funktionen" beschrieben.
15.3.2 Wirkungsweise

Diese Funktion kann als Minimalbegrenzung oder als Maximalbegrenzung konfiguriert werden. Die Wirkung kann einer Sequenz zugeordnet werden.

Hinweis

Soll eine an dieser Sequenz angeschlossene Pumpe trotz Begrenzung in Betrieb bleiben, so muss der Einstellwert "Lastbedingt Aus" bei der Pumpe auf 0 % gesetzt werden. Die Sequenzbegrenzung begrenzt eine Sequenz nicht bis auf 0 % zurück.

Minimalbegrenzung

Beim Unterschreiten des Begrenzungs-Sollwertes übersteuert die Begrenzungsfunktion mit PI-Verhalten die normale Reglerfunktion, um den Begrenzungs-Sollwert einzuhalten. Die Minimalbegrenzung wirkt schliessend auf die entsprechende Sequenz, die anderen Sequenzen sind nicht betroffen.

Anwendungsbeispiel

![Minimalbegrenzung Diagramm](image1)

Maximalbegrenzung

Beim Überschreiten des Begrenzungs-Sollwertes übersteuert die Begrenzungsfunktion mit PI-Verhalten die normale Reglerfunktion, um den Begrenzungs-Sollwert einzuhalten. Die Maximalbegrenzung wirkt schliessend auf die Sequenz.

Anwendungsbeispiel

![Maximalbegrenzung Diagramm](image2)
Soll eine an dieser Sequenz angeschlossene Pumpe trotz Begrenzung in Betrieb bleiben, so muss der Einstellwert "Lastbedingt Aus" bei der Pumpe auf 0 % gesetzt werden. Die Sequenzbegrenzung begrenzt eine Sequenz nicht bis auf 0 % zurück.

15.3.3 Fehlerbehandlung

Wenn das Inbetriebnahmemenü verlassen wird, wird überprüft, ob am Eingang ein Fühler angeschlossen ist. Ist der Fühler zu diesem Zeitpunkt angeschlossen und fehlt er später, wird eine Störungsmeldung "Fühlerfehler X.." erzeugt. Fehlt der Fühler, ist die Begrenzung inaktiv gesetzt.

15.4 Sequenzsperrung nach TA

Mit dieser Funktion können einzelne Sequenzen abhängig von der Aussentemperatur gesperrt werden.

15.4.1 Aktivieren der Funktion

Diese Funktion ist immer aktiv, wenn eine Aussentemperatur verfügbar ist. Sind gleichzeitig andere Einflüsse auf den Sequenzbegrenzregler aktiv, gilt die Prioritätsreihenfolge wie im Kapitel 11.1.3 "Priorität der Funktionen" beschrieben.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sequenz 1]</td>
<td>−50.0...+250.0 °C</td>
<td>250.0 °C</td>
</tr>
<tr>
<td>Aussementemperatur ></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Sequenz 2]</td>
<td>−50.0...+250.0 °C</td>
<td>250.0 °C</td>
</tr>
<tr>
<td>Aussementemperatur ></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Sequenz 3]</td>
<td>−50.0...+250.0 °C</td>
<td>250.0 °C</td>
</tr>
<tr>
<td>Aussementemperatur ></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Sequenz 4]</td>
<td>−50.0...+250.0 °C</td>
<td>−50.0 °C</td>
</tr>
<tr>
<td>Aussementemperatur <</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Sequenz 5]</td>
<td>−50.0...+250.0 °C</td>
<td>−50.0 °C</td>
</tr>
<tr>
<td>Aussementemperatur <</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹) nur im Regler 1 vorhanden

15.4.2 Wirkungsweise

Die Heizsequenzen können bei einer hohen, die Kühlsequenzen bei einer tiefen Aussentemperatur gesperrt werden. So kann sichergestellt werden, dass im Sommer nicht geheizt und im Winter nicht gekühlt wird. Die Schaltdifferenz beträgt fix 2 K.

Werden einzelne Sequenzen gesperrt, regelt der Regler übergangslos mit den anderen Sequenzen weiter. Wird also beispielsweise Sequenz 2 gesperrt, regelt der Regler zum Heizen: Sequenz1, dann Sequenz 3 (Sequenz 2 verzögert die Regelung nicht).

15.4.3 Fehlerbehandlung

Wenn das Inbetriebnahmemenü verlassen wird, wird überprüft, ob am Eingang ein Fühler angeschlossen ist. Ist der Fühler zu diesem Zeitpunkt angeschlossen und fehlt er später, wird eine Störungsmeldung "Fühlerfehler X.." erzeugt. Fehlt die Aussentemperatur, so werden die Sequenzen nicht gesperrt.
15.5 Sequenzsperrung nach Heizen/Kühlen Umschaltung

Im Falle eines 2-Rohr-Systems sind je nach Betriebsart Heizen oder Kühlen die entsprechenden Kühl- oder Heizsequenzen gesperrt (siehe Kapitel 27 "Heizen/Kühlen Umschaltung").

15.6 Universalschiebung

15.6.1 Aktivieren der Funktion

Diese Funktion kann für die Grundtypen P, C und U für Regler 1, 2 und 3 und für den Grundtyp A für Regler 2 und 3 aktiviert werden, indem ein entsprechender Eingang konfiguriert oder die Raum- oder Aussentemperatur ab Bus verwendet wird.

Konfiguration

Bedienzeile > Inbetriebnahme > Zusatzkonfiguration > Regler 1...3 > Eingänge >

<table>
<thead>
<tr>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universalschiebung ---, N.X1, N.X2, ... (nur analoge Werte)</td>
</tr>
</tbody>
</table>

15.6.2 Einstellwerte der Universalschiebung

Der Sollwert kann von einem universellen Eingang geschoben werden.

- Kälte: Schiebung des Vorlauftemperatur-Sollwerts für die Kühldecke nach Raum-Enthalpie oder nach Oberflächentemperatur
- Lüftung: Schiebung nach Raumfeuchte oder nach Oberflächentemperatur

Diese Sollwertschiebung wirkt auf den Komfort- und den Prekomfort-Sollwert nach folgendem Diagramm:

Funktionsdiagramm

Legende:
- Δ_1 [Sollwertführung 1]-Delta
- E_1 [Sollwertführung 1]-Endpunkt
- F_1 [Sollwertführung 1]-Startpunkt
- E_2 [Sollwertführung 2]-Endpunkt
- F_2 [Sollwertführung 2]-Startpunkt
- Δ_2 [Sollwertführung 2]-Delta
- SpC Sollwert oben
- SpH Sollwert unten
- Xn Eingangsgrösse
- w Sollwert aktuell
15.6.3 Fehlerbehandlung

Wenn das Inbetriebnahmemenü verlassen wird, wird überprüft, ob am Eingang ein Fühler angeschlossen ist. Ist der Fühler zu diesem Zeitpunkt angeschlossen und fehlt er später, wird eine Störungsmeldung "Fühlerfehler X." erzeugt.

Fehlt der Fühler, ist die Sollwertführung inaktiv gesetzt.

15.7 Abweichungsmeldung

Für jede Hauptregelgrösse kann eine Abweichungsmeldung generiert werden. Diese Funktion kann inaktiv gesetzt werden, indem die Werte sehr gross gesetzt werden.

15.7.1 Wirkungsweise

Wenn der Regelkreis am Anschlag läuft (alle Heizsequenzen offen und alle Kühlsequenzen geschlossen oder umgekehrt) und die eingestellte Ist-Sollwertabweichung überschritten wird, wird nach einer einstellbaren Zeit eine Störungsmeldung ausgelöst.

Die Störungsmeldeverzögerung lässt sich für den oberen und den unteren Anschlag separat einstellen. So können auch Anlagen überwacht werden, die nur Heizen oder nur Kühlen.

Hinweise

Die Zeit muss gross genug gesetzt werden, damit auch beim Anfahren der Anlage keine Störungsmeldung erzeugt wird.
Die Abweichungsmeldung bezieht sich immer auf den Sequenzregler. Bei der Zulufttemperaturen-Kaskadenregelung wird also die Zuluft überwacht. Die Werte sind entsprechend einzustellen.
Die Abweichungsmeldung funktioniert nur, wenn die Regelung aktiv ist. Sind z. B. alle Sequenzen nach Aussentemperatur gesperrt, so wird auch keine Abweichungsmeldung generiert.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3101</td>
<td>[Regler 1] unzulässige Regelabw.</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
<tr>
<td>3102</td>
<td>[Regler 2] unzulässige Regelabw.</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
<tr>
<td>3103</td>
<td>[Regler 3] unzulässige Regelabw.</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

Anwendungsbeispiel
Grundtyp C: Vorlauf-Temperaturregelung für Kaltwasser.
Bei einer Verstellung des Sollwertes nach oben, wenn die Ventile geschlossen sind und die Leitung gut isoliert ist, kann es sehr lange dauern, bis sich das Wasser erwärmt hat. Hier wird die Meldeverzögerung oben auf 10 h gesetzt, um unnötige Störungsmeldungen zu vermeiden. Ist die Sollwertabweichung nach 10 h immer noch anstehend, kann davon ausgegangen werden, dass die Ventile nicht richtig schliessen.

15.8 Regelungs-Timeout
Um zu vermeiden, dass z. B. das Kühlventil gleich öffnet, nachdem das Heizventil geschlossen wurde, kann eine Regelungs-Timeout-Time ein geneigt werden. Die Aufaddierung des Integralanteils wird während dieser Zeit gestoppt.

Einstellwerte
- Hauptmenü > Inbetriebnahme > Einstellungen > … oder
- Hauptmenü > Einstellungen > Regler 1...3 > Regelparameter >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelungs-Timeout</td>
<td>00.00...59.55 m:s</td>
<td>00.00 m:s</td>
</tr>
</tbody>
</table>

15.9 Zuordnung von Texten
Jedem Regler kann ein Text zugeordnet werden. Dieser wird im Menü und in der Bedienzeile angezeigt.

Freier Text
- Hauptmenü > Inbetriebnahme > Einstellungen > … oder
- Hauptmenü > Einstellungen > Regler 1...3 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regler n</td>
<td>max. 20 Zeichen</td>
<td>Regler n</td>
</tr>
</tbody>
</table>

Eine Übersicht aller editierbaren Texte und die Vorgehensweise zum Zurücksetzen von Texten sind in Kapitel 31.4 zu finden.
16 Luftqualitätsregler (Grundtyp A, P)

Eine Lüftungsanlage dient sowohl dazu, die Raumtemperatur zu regeln als auch dazu, die Räume mit frischer (hochqualitativer) Luft zu versorgen. Der Luftqualitätsregler hat die Aufgabe, nach Bedarf, d. h. abhängig von der in den Räumen gemessenen Luftqualität ein Stellsignal an den Ventilator oder an die Luftklappen auszugeben. Ventilator oder Luftklappen regeln damit auf komfortable Luftqualität. Zusätzlich zum Komfort wird in Räumen mit variierender Personenbelegung (Auditorien, Konferenzräumen, Büros, Restaurants, etc.) der Energieverbrauch optimiert.

Mit einer bedarfsgeregelten Lüftung kann Energie gespart werden, da die Lüftung nur eingeschaltet wird, wenn im Raum auch Luft benötigt wird. Hierbei wird nicht nur die Energie der Ventilatoren für die Förderung der Luft gespart, sondern auch die Wärme-/Kälteverluste für die Lufterneuerung im Raum auf das Notwendige reduziert.

Der Luftqualitätsregler bietet folgende Funktionalität aufgrund der gemessenen Luftqualität (CO2- resp. CO2/VOC-Wertes):

- Öffnen der Aussenluftklappe (Grundtyp A und P)
- Einschalten der Ventilatoren bzw. der Lüftungsanlage (Grundtyp A)
- Umschalten der Ventilatorstufen (Grundtyp A)
- Erhöhen der Ventilatordrehzahl (Grundtyp A und P)

16.1 Aktivieren der Funktion

Diese Funktion wird aktiviert, indem dem Funktionsblock ein Eingang zugeordnet wird. Es können nur ppm-Eingänge DC 0...10 V (siehe Kapitel 0 "Analoge Eingänge") zugeordnet werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Luftqualitätsregler >

Bedienzeile | Einstellbare Werte / Bemerkung
--- | ---, N.X1, N.X2,.. (nur ppm)

16.2 Öffnen der Aussenluftklappe (Grundtyp A, P)

Damit die Klappe geöffnet werden kann, muss eine stetige Klappe konfiguriert sein (siehe Kapitel 10.5 "Mischluftklappe (Grundtyp A, P)"). Das Öffnen der Klappe erfolgt nach folgendem Diagramm:
Die eingestellte Minimalstellung und Maximalstellung der Klappe werden berücksichtigt. Wird die Klappe auch vom Sequenzregler, z. B. als Wärmerückgewinnung angesteuert, so gilt der höhere Wert (Maximalauswahl).

Die eingestellten Werte gelten für die Betriebsart Comfort, Prekomfort und Economy. **Einstellwerte**

```
Hauptmenü > Inbetriebnahme > Einstellungen > .... oder
Hauptmenü > Einstellungen > Luftqualitätsregler >
```

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klappen-Sollwert</td>
<td>---, 0...2000 ppm</td>
<td>1000 ppm</td>
</tr>
<tr>
<td>Klappen-Xp</td>
<td>0...2000 ppm</td>
<td>400 ppm</td>
</tr>
</tbody>
</table>

Diese Funktion kann deaktiviert werden, indem der Klappen-Sollwert auf "---" gestellt wird.

16.3 Einschalten der Ventilatoren (Grundtyp A)

Die bedarfsgeregelte Lüftung wird mit den Anlagenbetriebsarten Stützbetrieb (Prekomfort) und Stützbetrieb (Economy) gewählt (siehe Kapitel 19 "Stützbetrieb (Grundtyp A)").

Die Ventilatoren schalten beim entsprechenden Luftqualitätssollwert gemäß folgendem Diagramm Ein bzw. Aus:

```
Funktionsdiagramm
```

![Diagramm](image)

* Luftqualitätssollwert (Prekomfort oder Economy)

Einstellwerte

```
Hauptmenü > Inbetriebnahme > Einstellungen > .... oder
Hauptmenü > Einstellungen > Luftqualitätsregler >
```

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftqualität-Sollwert</td>
<td>---, 0...2000 ppm</td>
<td>1100 ppm</td>
</tr>
<tr>
<td>Luftqualität-Sollwert</td>
<td>0...2000 ppm</td>
<td>1000 ppm</td>
</tr>
</tbody>
</table>

Diese Funktion kann deaktiviert werden, indem der entsprechende Luftqualitätssollwert auf "---" gesetzt wird.

16.4 Umschalten der Ventilatorstufen (Grundtyp A)

Bei 2-stufigem Betrieb von Ventilatoren kann zusätzlich eine Stufenumschaltung erfolgen. Die Umschaltung kann in folgenden Betriebsarten erfolgen:

- Normalbetrieb (Komfort) oder
- Normalbetrieb (Prekomfort) oder
- Stützbetrieb (Prekomfort) oder
- Umluftbetrieb (Prekomfort) oder
- Stützbetrieb (Economy)
Das Schalten des Ventilators nach Luftqualität erfolgt nach folgendem Diagramm:

Funktionsdiagramm

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder

Hauptmenü > Einstellungen > Luftqualitätsregler >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sollwert Ventilatorstufe 2</td>
<td>---, 0...2000 ppm</td>
<td>1200 ppm</td>
</tr>
</tbody>
</table>

Diese Funktion kann deaktiviert werden, indem der Sollwert Ventilatorstufe 2 auf "---" gestellt wird.

16.5 Erhöhen der Ventilatordrehzahl (Grundtyp A, P)

Damit der Ventilator hochgefahren werden kann, muss ein drehzahlgeregelter Ventilator mit Zuordnung fixer Drehzahlen für 1- oder 2-stufigen Betrieb konfiguriert sein (siehe Kapitel 10.1 "Ventilator (Grundtyp A, P)"). Das Hochfahren des Ventilators erfolgt nach folgendem Diagramm:

Funktionsdiagramm

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder

Hauptmenü > Einstellungen > Luftqualitätsregler >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator-Sollwert</td>
<td>---, 0...2000 ppm</td>
<td>1000 ppm</td>
</tr>
<tr>
<td>Ventilator-Xp</td>
<td>0...2000 ppm</td>
<td>400 ppm</td>
</tr>
</tbody>
</table>

Diese Funktion kann deaktiviert werden, indem der Ventilator-Sollwert auf "---" gesetzt wird.
16.6 Fehlerbehandlung
16.6.1 Fehler im Betrieb

Wenn das Inbetriebnahmemenü verlassen wird, wird überprüft, ob der Luftqualitätsfühler angeschlossen ist. Ist zu diesem Zeitpunkt der Fühler nicht angeschlossen, so wird die Funktion "Luftqualitätsregler" inaktiv gesetzt.

Ist der Fühler zu diesem Zeitpunkt angeschlossen und fehlt er später, wird eine Störungsmeldung "Fühlerfehler X..." abgesetzt und die Funktion "Luftqualitätsregler" wird inaktiv gesetzt.
17 Frostschutz (Grundtyp A und P)

Die Funktion hat die Aufgabe, den Warmwasser-Lufterwärmer vor dem Einfrieren zu schützen.

Folgende Arten der Frostschutzüberwachung stehen zur Verfügung:

<table>
<thead>
<tr>
<th>Frostschutz</th>
<th>N.X1</th>
<th>• Frostschutzwächter 1..3 (wirken direkt auf die entsprechenden Regelkreise 1..3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frostschutzaktiv</td>
<td>N.X1</td>
<td>• Frostschutzwächter 1..3 (wirken direkt auf die entsprechenden Regelkreise 1..3)</td>
</tr>
<tr>
<td>N.X1</td>
<td>x</td>
<td>Frost 1</td>
</tr>
<tr>
<td>N.X1</td>
<td>x</td>
<td>Frost 2</td>
</tr>
<tr>
<td>N.X1</td>
<td>x</td>
<td>Frost 3</td>
</tr>
</tbody>
</table>

Die Frostschutzfunktion kann bei mangelnder Heizleistung (z. B. kein Heizwassers) die Anlage nicht vor Frostschäden schützen.

17.1 Aktivieren des Blocks

Diese Funktion wird aktiviert, indem der Bezeichner eines Einganges auf "Frostschutz" oder "Frostschutzwächter 1..3" eingestellt wird (siehe Kapitel 8.1 "Universelle Eingänge").

Konfiguration

- **Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Eingangsbezeichner**

Einstellwerte für Frostschutz

- **Hauptmenü > Inbetriebnahme > Einstellungen > ... oder Hauptmenü > Einstellungen > Frostschutz >**

<table>
<thead>
<tr>
<th>Bedieneinteil</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erkennung</td>
<td>Wächter, Aktiv DC 0...10 V = 0...15 °C (luftseitig), Passiv Ni1000 (wasserseitig)</td>
<td>Wächter</td>
</tr>
<tr>
<td>Frostgefahr-Grenzwert</td>
<td>−50.0...+50.0 °C</td>
<td>5.0 °C</td>
</tr>
<tr>
<td>P-Band Xp</td>
<td>1.0...100.0 K</td>
<td>5.0 K</td>
</tr>
<tr>
<td>Anlage-AUS-Frostschutzsoll</td>
<td>−50.0...+50.0 °C</td>
<td>20.0 °C</td>
</tr>
<tr>
<td>Anlage-AUS-Xp</td>
<td>0.5...999.5 K</td>
<td>7.0 K</td>
</tr>
<tr>
<td>Anlage-AUS-Tn</td>
<td>00.00...59.55 m:s</td>
<td>03.30 m:s</td>
</tr>
<tr>
<td>Einfriergefährdeter Regelkreis</td>
<td>Regler 1...3</td>
<td>Regler 1</td>
</tr>
</tbody>
</table>

Hinweis

Bei der Funktion "Frostschutz" sind die Einstellungen für "Erkennung" und "Einfriergefährdeter Regelkreis" nutzbar.
Mit der Einstellung "Erkennung" wird eingestellt, mit welchem Fühler/Wächter der Frost erkannt wird. Je nach Einstellung wird folgende Frostschutzfunktion aktiv:

- Wächter: Frostschutzwächter
- Aktiv DC 0...10 V = 0...15 °C: 2-stufiger Frostschutz, Frostschutzhelfer mit aktivem Signal DC 0...10 V = 0...15 °C, für luftseitigen Frostschutz
- Passiv LG-Ni1000: 2-stufiger Frostschutz, Frostschutzhelfer mit passivem Signal LG-Ni 1000, für wasserseitigen Frostschutz

Damit die 2-stufige Frostschutz wasserseitig einwandfrei funktioniert, muss eine Lufterwärmepumpe vorhanden und die Aussentemperatur muss verfügbar sein (siehe Kapitel 8.4 "Aussentemperatur").

In der folgenden Tabelle sind die richtigen Konfigurationen für die Funktion "Frostschutz" zusammengefasst:

<table>
<thead>
<tr>
<th>Frostschutzfunktion</th>
<th>Bedienzeile</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frostschutzwächter</td>
<td>Eingangsbezeichner N.Xn</td>
<td>Frostschutz</td>
</tr>
<tr>
<td>Erkennung</td>
<td>Wächter</td>
<td></td>
</tr>
<tr>
<td>Einfriergefährdeter Regelkreis</td>
<td>Regler 1...3</td>
<td></td>
</tr>
<tr>
<td>2-stufiger Frostschutz</td>
<td>Eingangsbezeichner N.Xn</td>
<td>Frostschutz</td>
</tr>
<tr>
<td>luftseitig</td>
<td>Erkennung</td>
<td>Aktiv DC 0...10 V = 0...15 °C (luftseitig)</td>
</tr>
<tr>
<td>Einfriergefährdeter Regelkreis</td>
<td>Regler 1...3</td>
<td></td>
</tr>
<tr>
<td>2-stufiger Frostschutz</td>
<td>Eingangsbezeichner N.Xn</td>
<td>Frostschutz</td>
</tr>
<tr>
<td>wasserseitig</td>
<td>Erkennung</td>
<td>Passiv Ni1000 (wasserseitig)</td>
</tr>
<tr>
<td>Einfriergefährdeter Regelkreis</td>
<td>Regler 1...3</td>
<td></td>
</tr>
</tbody>
</table>

Hinweise

Wirkt die Frostschutzfunktion und der Frostschutzwächter gleichzeitig (z. B. Frostschutz auf Regelkreis 2 wirkend und Frostschutzwächter 2) auf einen Regelkreis, dann wirkt immer das Maximum auf den Regler der beiden Frostfunktionen.

Ist der aktuelle Zustand der Heizen/Kühlen Umschaltung gleich "Kühlen" und es wird Frost detektiert, dann wird eine Froststörung generiert und die Anlage abgestellt. Die Frostfunktion wirkt auf alle Aggregate, die an die Sequenzen 1 bis 3 des einfriergefährdeten Regelkreises angeschlossen sind.

Ist an einer oder mehreren Pumpen die Bedienzeile Frostvorrang auf Ja gestellt, dann wirkt das Maximum aller Frostfunktionen direkt auf die Pumpen.

Sind gleichzeitig andere Einflüsse auf den Sequenzregler aktiv, gilt die Prioritätsreihenfolge wie im Kapitel 11.1.3 "Priorität der Funktionen" beschrieben.
17.2 Wirkungsweise

17.2.1 Wirkungsweise der Frostwächter

Eine sichere Frostüberwachung ist abhängig von der Fühlerplatzierung!
Beim Unterschreiten des am Frostwächter eingestellten Grenzwertes sendet dieser ein Signal an den Regler.
Es bedeutet:
- Kontakt geschlossen: Keine Frostgefahr
- Kontakt offen: Frostgefahr
Dies löst folgendes aus:
- Die Ventilatoren werden ausgeschaltet
- Der konfigurierte Regelkreis mit dem einfrigergefährdeten Luftwärmer schaltet alle Kühlschaltungen aus und öffnet alle Heizschaltungen zu 100 %, Dabei wird auch die Luftwärmenpumpe mit eingeschaltet.
Stufenschalter werden mit eingeschaltet, wenn diese nicht über den Eingang "Freigabe extern" gesperrt werden!
- Alle anderen Regelkreise werden ausgeschaltet
- Die Aussenluftklappe wird geschlossen (siehe Kapitel 10.5 "Mischluftklappe (Grundtyp A, P)"
Die Frostschutzfunktion mit Frostwächter ist in allen Betriebsarten (Komfort, Prekomfort, Economy und Schutzbetrieb) aktiv.

17.2.2 2-phasiger Frostschatz luftseitig

(Aktiv DC 0...10 V = 0...15 °C)

Eine sichere Frostüberwachung ist abhängig von der Fühlerplatzierung!
Beim Unterschreiten des eingestellten Einsatzpunktes (= Frostgefahr-Grenzwert + 2 K + P-Band) werden alle Heizsequenzen stetig geöffnet und alle Kühlsequenzen stetig geschlossen. Dabei wird auch die Luftwärmerpumpe eingeschaltet. So soll vermieden werden, dass der "Frostgefahr-Grenzwert" unterschritten wird.

Wird dieser Grenzwert trotzdem unterschritten, löst das folgende Reaktionen aus:

- Die Ventilatoren werden ausgeschaltet
- Der konfigurierte Regelkreis mit dem einfriergefährdeten Luftwärmer hält alle Heizsequenzen offen und alle Kühlsequenzen geschlossen, die Luftwärmerpumpe bleibt eingeschaltet.

Achtung

Stufenschalter bleiben eingeschaltet, wenn diese nicht über den Eingang "Freigabe extern" gesperrt werden!
- Alle anderen Regelkreise werden ausgeschaltet
- Die Aussenluftklappe wird geschlossen (siehe Kapitel 10.5 "Mischluftklappe (Grundtyp A, P)"

Die Frostschutzfunktion ist auch bei ausgeschalteter Anlage aktiv.

17.2.3 2-phasiger Frostschutz wasserseitig (Passiv Ni1000)

Die Frostschutzfunktion ist auch bei ausgeschalteter Anlage aktiv.

Anwendungsbeispiel

- Eine sichere Frostüberwachung ist abhängig von der Fühlerplatzierung! Der Fühler sollte im/am wasserseitigen Austritt des Luftwärmer innerhalb des Luftkanals platziert sein.
- Als zusätzliche Schutzfunktion muss die Heizkreispumpe bei Aussentemperaturen tiefer als 5 °C automatisch einschalten (Einstellwert "Aussentemp'bedingt Ein", siehe Kapitel 10.2 "Pumpe").

Beim Unterschreiten des eingestellten Einsatzpunktes werden die Heizsequenzen stetig geöffnet und die Kühlsequenzen stetig geschlossen. So soll vermieden werden, dass der "Frostgefahr-Grenzwert" unterschritten wird.

Wird dieser Frostgefahr-Grenzwert trotzdem unterschritten, löst das folgende Reaktionen aus:

- Die Ventilatoren werden ausgeschaltet
Der konfigurierte Regelkreis mit dem einfriergefährdeten Lufterwärmer hält alle Heizsequenzen offen und alle Kühlsequenzen geschlossen, die Lufterwärmerpumpe bleibt eingeschaltet.

Achtung

Stufenschalter bleiben eingeschaltet, wenn diese nicht über den Eingang "Freigabe extern" gesperrt werden!

- Alle anderen Regelkreise werden ausgeschaltet
- Die Aussenluftklappe wird geschlossen (siehe Kapitel 10.5 "Mischluftklappe (Grundtyp A, P)"

Funktionsdiagramm

Beim ausgeschalteter Anlage wird die Temperatur des Lufterwärmers mit einem PI-Regler auf einen einstellbaren Wert geregelt, damit der Lufterwärmer beim Anfahren schon Wärme gespeichert hat. Diese Funktion wirkt auf die Heizsequenzen des konfigurierten Regelkreises, jedoch:

- Die Aussenluftklappe bleibt geschlossen (siehe Kapitel 10.5 "Mischluftklappe (Grundtyp A, P)"
- Der Wärmerückgewinner wird eingeschaltet (siehe Kapitel 10.4 "Wärmerückgewinner (Grundtyp A, P)"

17.3 Quittierung

Die Anlage kann erst wieder anlaufen, wenn keine Frost-Störungsmeldung mehr ansteht und die Störung entriegelt wurde.

Folgende alternative Quittiermethoden für Störungsmeldungen sind wählbar:

- Quittieren und entriegeln am Regler
- Nur Quittieren am Regler (nur zu empfehlen, wenn ein Frostwächter mit eigener Verriegelung eingesetzt wird)
- Keine Quittierung

Einstellwerte Frostschutz

[Hauptmenü > Inbetriebnahme > Einstellungen > oder Hauptmenü > Einstellungen > Frostschutz >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Störungsquittierung</td>
<td>Keine, Quittieren,</td>
<td>Quittieren und</td>
</tr>
<tr>
<td></td>
<td>Quittieren und Entriegeln</td>
<td>Entriegeln</td>
</tr>
</tbody>
</table>

Einstellwerte Frostschutzwächter 1..3

[Hauptmenü > Inbetriebnahme > Einstellungen > oder Hauptmenü > Einstellungen > Frostschutzwächter 1..3 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Störungsquittierung</td>
<td>[1..3] Keine, Quittieren,</td>
<td>Quittieren und</td>
</tr>
<tr>
<td></td>
<td>Quittieren und Entriegeln</td>
<td>Entriegeln</td>
</tr>
</tbody>
</table>

Hinweis

Wurde ein Frostwächter mit eigener Störungsverriegelung eingesetzt, wird die Störungsmeldung am Frostwächter entriegelt. Die Anlage kann wieder anlaufen, sobald die Störung entriegelt wurde, unabhängig davon, ob die Störungsmeldung am Regler quittiert wurde oder nicht.
17.4 Anschlussschemen

Anschlussschema Wächter
Am Eingang kann ein Frostschutzwächter angeschlossen werden. Der Wächter muss nach folgendem Schema angeschlossen werden:

![Anschlussschema Wächter](image)

Anschlussschema Luft
Am Eingang kann ein aktiver Temperaturfühler mit dem Signal 0...10 V = 0...15 °C angeschlossen werden. Der Fühler muss nach folgendem Schema angeschlossen werden:

![Anschlussschema Luft](image)

Anschlussschema Wasser
Am Eingang kann ein passiver Temperaturfühler LG-Ni 1000 angeschlossen werden. Der Fühler muss nach folgendem Schema angeschlossen werden:

![Anschlussschema Wasser](image)

Legende zu den Anschlussschemen

- **B3**
 Frostfühler QAF63... (Luft)

- **B3**
 Tauchtemperaturfühler QAЕ26.9 (Wasser)

- **F3**
 Frostwächter QAF81 (Luft)

- **N**
 Universalregler RMU7..B
17.5 Fehlerbehandlung

17.5.1 Konfigurationsfehler

Werden mehrere Eingänge mit dem gleichen Bezeichner Frostschutz, Frostschutzwächter 1, Frostschutzwächter 2 oder Frostschutzwächter 3 als Frostschutzeingänge konfiguriert, wird der erste Eingang mit diesem Eingangsbezeichner verwendet.

17.5.2 Fehler im Betrieb

- **Frostwächter:**
 Digitale Signale können nicht überwacht werden. Fehlt das Signal (= Kontakt offen), wird dies als Frostgefahr interpretiert und die Anlage geht in Frostschutzbetrieb

- **2-stufiger Frostschutz luftseitig "Aktiv DC 0...10 V = 0...15 °C":**
 Fehlt das Signal des Frostfühlers, wird eine Störungsmeldung abgesetzt und die Anlage geht in Frostschutzbetrieb.

- **2-stufiger Frostschutz wassereitig "Passiv Ni1000":**
 Fehlt das Signal des Frostfühlers, wird eine Störungsmeldung abgesetzt und die Anlage geht in Frostschutzbetrieb.

 Fehlt das Signal der Aussentemperatur, so wird die Pumpe permanent eingeschaltet (siehe Kapitel 10.2.11 "Ein" nach Aussentemperatur", der Einstellwert muss auf 5°C gesetzt sein).

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3920</td>
<td>Frost</td>
<td>Dringende Meldung, mit Anlagenstopp</td>
</tr>
<tr>
<td>3921</td>
<td>Frostschutz-Fühlerfehlr</td>
<td>Dringende Meldung, mit Anlagenstopp</td>
</tr>
<tr>
<td>3922</td>
<td>Frostgefahr Frost 1</td>
<td>Dringende Meldung, mit Anlagenstopp</td>
</tr>
<tr>
<td>3923</td>
<td>Frostgefahr Frost 2</td>
<td>Dringende Meldung, mit Anlagenstopp</td>
</tr>
<tr>
<td>3924</td>
<td>Frostgefahr Frost 3</td>
<td>Dringende Meldung, mit Anlagenstopp</td>
</tr>
</tbody>
</table>
18 Vorwärmsg funktion (Grundtyp A und P)

18.1 Aktivieren des Blocks

Damit die Vorwärmsfung aktiviert werden kann, muss mindestens ein Frostschutz aktiviert sein. Die Vorwärmsfung wird aktiviert, indem für die "Spülzeit maximal" ein Wert > 00.00 m:s. eingegeben wird.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aussentemperatur-Grenzwert</td>
<td>0... 30 °C</td>
<td>5 °C</td>
</tr>
<tr>
<td>Auslegungstemperatur</td>
<td>−35...+35 °C</td>
<td>−10 °C</td>
</tr>
<tr>
<td>Spülzeit maximal</td>
<td>00.00...59.55 m:s</td>
<td>00.00 m:s</td>
</tr>
<tr>
<td>Sperrzeit</td>
<td>00.00...59.55 m:s</td>
<td>30.00 m:s</td>
</tr>
</tbody>
</table>

18.2 Wirkungsweise

Stufenschalter werden mit eingeschaltet, wenn diese nicht über den Eingang "Freigabe extern" gesperrt werden!

Der Spülvorgang des Lufterwärmers wird gestartet, wenn die Anlage eingeschaltet wird, die Aussenlufttemperatur unter dem eingestellten Wert liegt und die Sperrzeit seit dem letzten Ausschalten abgelaufen ist.

Wird die Anlage über die Zeitschaltuhr eingeschaltet, so wird der Spülvorgang um die berechnete Spüldauer vor dem Einschaltpunkt der Schaltuhr gestartet, so dass beim eingestellten Einschaltpunkt der Schaltuhr die Ventilatoren starten können.

Während der Spüling bleibt der Ventilator ausgeschaltet und die Aussenluftklappe bleibt geschlossen (Minimalbegrenzung ist wirkungslos, siehe Kapitel 10.5 "Mischluftklappe (Grundtyp A, P)").

Achtung

Stufenschalter werden mit eingeschaltet, wenn diese nicht über den Eingang "Freigabe extern" gesperrt werden!
Um die Spülzeit errechnen zu können, muss die Auslegungstemperatur (= tiefste Aussentemperatur) und die dazugehörige "Spülzeit maximal" eingegeben werden. Die Vorwärmfunktion wird nur gestartet, wenn die Aussentemperatur unter dem eingerichteten "Aussentemperatur-Grenzwert" liegt.

Die Spülzeit wird in Abhängigkeit der Aussentemperatur nach folgendem Diagramm berechnet:

Die Ausgangsstellung während der Spülzeit errechnet sich nach folgendem Diagramm:

Die Vorspülung läuft nach folgendem Diagramm:

Nach abgelaufener Vorspülzeit und nach Ablauf der für die Ventilatoren eingegebenen Startverzögerungen starten die Ventilatoren.

Hinweis

Die Vorwärmfunktion wird nicht aktiviert, wenn der Ventilator durch die Funktion "Entrauchung" eingeschaltet wird.

Ein einwandfreies Funktionieren der Vorwärmfunktion ist abhängig von der Fühlerplatzierung. Der Aussenluftfühler sollte ausserhalb des Gebäudes angebracht werden. Ist dies nicht möglich, ist er unmittelbar am Ort der Aussenluftansaugung vor der Aussenluftklappe anzubringen.
Platzierung des Aussenluftfühlers vor der Aussenluftklappe.

Ist die Aussentemperatur nicht verfügbar, kann die Funktion trotzdem aktiviert werden. Die Funktion wird dann bei jedem Anlaufen der Anlage für die maximale Spülzeit aktiv. Dies kann dann sinnvoll sein, wenn die Heizung im Sommer ausgeschaltet bleibt (die Heizung darf nicht bedarfsabhängig über die Kommunikation einschalten!)

Wenn die Anlage kurz nach dem Ausschalten wieder eingeschaltet wird, müssen die Luftwärmer nicht vorgespült werden. Die Zeit nach dem Ausschalten, bei der die Vorwärmfunktion nicht aktiviert werden muss, kann mit dem Einstellwert "Sperrzeit" eingestellt werden.

18.3 Fehlerbehandlung

Fehlt die Aussentemperatur, wird die Vorwärmfunktion bei jedem Anlaufen der Anlage für die maximale Spülzeit aktiv. Das Stellsignal ist dann jeweils 100 %.
19 Stützbetrieb (Grundtyp A)

Die Funktion Stützbetrieb (Prekomfort) bzw. Stützbetrieb (Economy) hat die Aufgabe, während der Betriebsart Prekomfort bzw. während der Betriebsart Economy, also bei ausgeschalteten Ventilatoren, eine oder mehrere physikalische Messgrössen zu überwachen.

- Beispiel mit Raumtemperaturfühler:
 Bei einer zu tiefen oder zu hohen Raumtemperatur werden die Ventilatoren wieder eingeschaltet, damit ein Auskühlen oder Überwärmen des Gebäudes (bzw. des Raumes oder der Räume) verhindert werden kann
- Beispiel mit Raumfeuchtefühler:
 Bei einer zu tiefen oder zu hohen Raumfeuchte werden die Ventilatoren wieder eingeschaltet, damit ein zu trockenes oder zu feuchtes Raumklima verhindert werden kann
- Beispiel mit Raumluftqualitätsfühler:
 Bei einer unbeglückten Luftqualität werden die Ventilatoren wieder eingeschaltet, damit ein behaglicher Raumkomfort erreicht werden kann

Hinweis

Die Einbettung der Funktion Stützbetrieb in die Betriebsarten ist in Kapitel 6 "Betriebsarten" ausführlich beschrieben.

19.1 Aktivieren der Funktion

Die Funktion Stützbetrieb (Prekomfort), Stützbetrieb (Economy) kann im Grundtyp A aktiviert werden.

Einstellwerte

- Hauptmenü > Inbetriebnahme > Einstellungen > ...
 - oder
- Hauptmenü > Einstellungen > Betriebsart >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>⬤ Anlagenbetriebsart</td>
<td>Normalbetrieb, Stützbetrieb, Umluftbetrieb</td>
<td>Normalbetrieb</td>
</tr>
<tr>
<td>⬤ Anlagenbetriebsart</td>
<td>Kein Stützbetrieb, Stützbetrieb</td>
<td>Kein Stützbetrieb</td>
</tr>
</tbody>
</table>

Zusätzlich muss für die Stützfunktion mindestens eine der folgenden Messwerte verfügbar sein:
- Raumtemperatur
- Hauptregelgrösse Regler 2
- Hauptregelgrösse Regler 3
- Raumluftqualität als Hauptregelgrösse für den Luftqualitätsregler

Die Stützfunktion ist aktiv sobald die entsprechende Hauptregelgrösse verfügbar und als Anlagenbetrieb "Stützbetrieb" gewählt ist. Bei der Hauptregelgrösse von Regler 2 bzw. Regler 3 kann es sich um eine universelle Grösse handeln (z.B. relative Feuchte, absolute Feuchte, Oberflächentemperatur, etc.).
19.2 Wirkungsweise Stützbetrieb

Über die Einstellung "Betriebszeit minimal" können die Anlagenelemente vor zu häufigem Ein- bzw. Ausschalten geschützt werden.

Einstellwerte

*Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
*Hauptmenü > Einstellungen > Betriebsart >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stützbetriebszeit minimal</td>
<td>00.00...06.00 h.m</td>
<td>00.30 h.m</td>
</tr>
<tr>
<td>Stützbetrieb Ventilator</td>
<td>Stufe 1, Stufe 2</td>
<td>Stufe 1</td>
</tr>
</tbody>
</table>

Hinweise

Bei Ein-/Ausschalten der Anlage durch den Regler 1, Regler 2 oder Regler 3 gelten folgende Ansteuerungen:

- Mischluftklappe mit normaler Ansteuerung
- Der drehzahlgergelte Ventilator mit fixer Drehzahl für 2-stufigen Betrieb wird mit der minimalen Drehzahl angesteuert (siehe Kapitel 10.1.4 "Ventilator mit variabler Drehzahl")

Bei Ein-/Ausschalten der Anlage durch den Luftqualitätsregler gelten folgende Punkte:

- Mischluftklappe wird geregelt auf den Klappen-Sollwert (siehe Kapitel 16.2 "Öffnen der Aussenluftklappe (Grundtyp A, P")
- Der drehzahlgergelte Ventilator ohne Drucksteuerung wird mit dem Ventilator-Sollwert geregelt (siehe Kapitel 16.5 "Erhöhen der Ventilatordrehzahl (Grundtyp A, P")

Ansteuerung der Zuluft- und Abluftventilatoren:

- Bei Anlageneinschaltung durch den Stützbetrieb wird der Zuluftventilator immer eingeschaltet. Die Einschaltszeit des Abluftventilators ist abhängig vom Einstellparameter "Stütz-/Umluftbetrieb" (siehe Kapitel 10.1.13)
- Bei 2-stufigem Betrieb von Ventilatoren und konfigurierter Raum/Zuluft- oder Abluft/Zuluft-Kaskadenregelung kann die Stufenumschaltung nach Wärme-/Kältebedarf erfolgen (siehe Kapitel 11.6.3)
- Bei 2-stufigem Betrieb von Ventilatoren und konfiguriertem Luftqualitätsregler kann die Stufenumschaltung nach Luftqualität erfolgen (siehe Kapitel 16.4)

Wenn der Lüftungsregler RMU7..B den gleichen Raum zusammen mit einem Heizungsregler RMH760 kombiniert regelt (siehe Kapitel 11.8 "Raumregelungskombinationen mit Heizungsregler"), wird der Stützbetrieb (Prekomfort) und Stützbetrieb (Economy) zum Heizen bei eingeschalteter Heizung über den Bus automatisch inaktiv gesetzt.

Der Stützbetrieb wird ebenfalls automatisch inaktiv gesetzt bei Nutzung des Eingangskontakts "Kask./Konst.", wenn dieser geschlossen ist.

Siemens
Universalregler RMU710B, RMU720B, RMU730B
Building Technologies
19 Stützbetrieb (Grundtyp A)

CE1P3150de
03.10.2011
19.2.1 Sollwerte für das Ein-/Ausschalten der Anlage beim Stützbetrieb (Prekomfort)

Regler 1 als Raumtemperaturregler

<table>
<thead>
<tr>
<th>Einschaltkriterien des Stützbetriebes:</th>
<th>Ausschaltkriterien des Stützbetriebes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumtemp < Prekomfort-Heiz-Sollwert</td>
<td>Raumtemp > Prekomfort-Heiz-Sollwert + 1K</td>
</tr>
<tr>
<td>Raumtemp > Prekomfort-Kühl-Sollwert</td>
<td>Raumtemp < Prekomfort-Kühl-Sollwert - 1K</td>
</tr>
</tbody>
</table>

Einstellempfehlung für Prekomfort-Sollwerte damit die Ausschaltkriterien erreicht werden können:

- Prekomfort-Heiz-Sollwert < Komfort-Heiz-Sollwert - 1K
- Prekomfort-Kühl-Sollwert > Komfort-Kühl-Sollwert + 1K

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prekomfort-Kühl-Sollwert</td>
<td>28 °C</td>
</tr>
<tr>
<td>Prekomfort-Heiz-Sollwert</td>
<td>19 °C</td>
</tr>
</tbody>
</table>

Regler 2 und 3 als Universalregler

<table>
<thead>
<tr>
<th>Einschaltkriterien des Stützbetriebes:</th>
<th>Ausschaltkriterien des Stützbetriebes:</th>
</tr>
</thead>
</table>
| Hauptregelgrösse < Prekomfort-Sollwert unten | Hauptregelgrösse > Prekomfort-Sollwert unten + x %
| Hauptregelgrösse > Prekomfort-Sollwert oben | Hauptregelgrösse < Prekomfort-Sollwert oben - x % |

Einstellempfehlung für Prekomfort-Sollwerte damit die Ausschaltkriterien erreicht werden können:

- Prekomfort-Sollwert unten < Komfort-Sollwert unten – x %
- Prekomfort-Sollwert oben > Komfort-Sollwert oben + x %

1) x % berechnet sich aus eingestelltem Sollwert * 0.05

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prekomfort-Sollwert oben</td>
<td>28 °C, 80 %, 12 g/kg, 50 kJ/kg, 1000 W/m², 15 m/s, 100 bar, 1000 mbar, 1000 Pa, 1500 ppm, 100, 1000</td>
</tr>
<tr>
<td>Prekomfort-Sollwert unten</td>
<td>19 °C, 20 %, 4 g/kg, 0 kJ/kg, 200 W/m², 0 m/s, 0 bar, 0 mbar, 0 Pa, 0 ppm, 0</td>
</tr>
</tbody>
</table>
Luftqualitätsregler für Ein/Aus-Schalten der Anlage (siehe auch Kapitel 16 "Luftqualitätsregler (Grundtyp A, P)"):

- Ein bei Luftqualität-Istwert > Prekomfort-Luftqualitätssollwert + 50 ppm
- Aus bei Luftqualität-Istwert < Prekomfort-Luftqualitätssollwert - 50 ppm

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Luftqualität-Sollwert</td>
<td>---, 0...2000, ppm</td>
<td>1000 ppm</td>
</tr>
</tbody>
</table>

Deaktivierung des Prekomfort-Luftqualitätssollwerts durch Einstellung auf "---".

19.2.2 Sollwerte für das Ein-/Ausschalten der Anlage beim Stützbetrieb (Economy)

Regler 1 als Raumtemperaturregler

<table>
<thead>
<tr>
<th>Einschaltkriterien des Stützbetriebes:</th>
<th>Ausschaltkriterien des Stützbetriebes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumtemperatur < Economy-Heiz-Sollwert</td>
<td>Raumtemperatur > Economy-Heiz-Sollwert + 1K</td>
</tr>
<tr>
<td>Raumtemperatur > Economy-Kühl-Sollwert</td>
<td>Raumtemperatur < Economy-Kühl-Sollwert – 1K</td>
</tr>
</tbody>
</table>

Einstellempfehlung für Economy-Sollwerte damit die Ausschaltkriterien erreicht werden können:

- Economy-Heiz-Sollwert < Komfort-Heiz-Sollwert - 1K
- Economy-Kühl-Sollwert > Komfort-Kühl-Sollwert + 1K

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economy-Kühl-Sollwert</td>
<td>30.0 °C</td>
</tr>
<tr>
<td>Economy-Heiz-Sollwert</td>
<td>15.0 °C</td>
</tr>
</tbody>
</table>
Regler 2 und 3 als Universalregler

<table>
<thead>
<tr>
<th>Einschaltkriterien des Stützbetriebes:</th>
<th>Ausschaltkriterien des Stützbetriebes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptregelgröße < Economy-Sollwert unten</td>
<td>Hauptregelgröße > Economy-Sollwert oben + x % 1)</td>
</tr>
<tr>
<td>Hauptregelgröße > Economy-Sollwert unten</td>
<td>Hauptregelgröße < Economy-Sollwert unten - x % 1)</td>
</tr>
</tbody>
</table>

Einstellempfehlung für Economy-Sollwerte damit die Ausschaltkriterien erreicht werden können:

- Economy-Sollwert unten < Komfort-Sollwert unten - x % 1)
- Economy-Sollwert oben > Komfort-Sollwert oben + x % 1)

1) x % berechnet sich aus eingestellter Sollwert * 0.05

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economy-Sollwert oben</td>
<td>30 °C, 30 K, 100 %, 999 g/kg, 999 kJ/kg, 1638 W/m², 327 m/s, 9999 bar, 9999 mbar, 9999 Pa, 9999 ppm, 999, 999</td>
</tr>
<tr>
<td>Economy-Sollwert unten</td>
<td>15 °C, 15 K, 0 %, -50 g/kg, -50 kJ/kg, -50 W/m², -50 m/s, -50 bar, -50 mbar, -50 Pa, -50 ppm, -50</td>
</tr>
</tbody>
</table>

Luftqualitätsregler für Ein/Aus-Schalten der Anlage

(siehe auch Kapitel 16 "Luftqualitätsregler (Grundtyp A, P)"):

- Ein bei Luftqualität-Istwert > Economy-Luftqualitätssollwert + 50 ppm
- Aus bei Luftqualität-Istwert < Economy-Luftqualitätssollwert - 50 ppm

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luftqualität-Sollwert</td>
<td>---, 0...2000, ppm</td>
<td>1100 ppm</td>
</tr>
</tbody>
</table>

Deaktivierung des Economy-Luftqualitätssollwerts durch Einstellung auf "---".
19.3 Beispiele Stützbetrieb

19.3.1 Stützbetrieb (Economy) zum Heizen

Das Beispiel bezieht sich auf den Regler 1 mit der Hauptregelgröße Raumtemperatur. Das Beispiel kann funktionell auch übertragen werden auf Regler 2, Regler 3 und den Luftqualitätsregler.

Am Ende der Belegungszeit schaltet die Anlage aus, d. h. die Anlagenbetriebsart wechselt von Normalbetrieb (Komfort) nach Stützbetrieb (Economy). Dabei sinkt oder steigt die Temperatur im Raum, je nach den herrschenden äußeren Witterungsbedingungen und dem Klima im Innern des Raumes.

Sinkt die Temperatur im Raum unter den Economy-Heiz-Sollwert, so resultiert ein Stützbetrieb mit Wirkung "Heizen".

Im Stützbetrieb wird solange geheizt, bis sich die Raumtemperatur 1 Kelvin über dem Economy-Heiz-Sollwert befindet. Danach wird die Anlage wieder ausgeschaltet.

Funktionsdiagramme

Zustand der Anlagenelemente

Die Anlage wird in der Betriebsart Economy beim Unterschreiten des eingestellten Economy-Heiz-Sollwertes (SpHEco) eingeschaltet. Bei eingeschalteter Anlage wird auf die eingestellten Komfort-Sollwerte geregelt (Ventilatorstufen und Sollwerte aller Regelkreise).

Hinweis

Der Stützbetrieb kann nur eingeschaltet werden, wenn keine Störungsmeldungen, die die Anlage ausschalten, anliegen.
19.3.2 Stützbetrieb (Economy) zum Kühlen

Das Beispiel bezieht sich auf den Regler 1 mit der Hauptregelgröße Raumtemperatur. Es kann funktional auch übertragen werden auf Regler 2 und Regler 3.

Am Ende der Belegungszeit schaltet die Anlage aus, d. h. die Anlagenbetriebsart wechselt von Normalbetrieb (Komfort) nach Stützbetrieb (Economy). Dabei sinkt oder steigt die Temperatur im Raum, je nach den herrschenden äußeren Witterungsbedingungen und dem Klima im Innern des Raumes.

Steigt die Temperatur im Raum über den Economy-Kühl-Sollwert, so resultiert ein Stützbetrieb mit Wirkung "Kühlen".

Im Stützbetrieb wird solange gekühlt, bis sich die Raumtemperatur 1 Kelvin unter dem Economy-Kühl-Sollwert befindet. Danach wird die Anlage wieder ausgeschaltet.

Funktionsdiagramme

Die Anlage wird in der Betriebsart Economy beim Überschreiten des eingestellten Economy-Kühl-Sollwertes (SpCEco) eingeschaltet. Bei eingeschalteter Anlage wird auf die eingestellten Komfort-Sollwerte geregelt (Ventilatorstufen und Sollwerte aller Regelkreise).

Zustand der Anlagenelemente

Die Anlage wird in der Betriebsart Economy beim Überschreiten des eingestellten Economy-Kühl-Sollwertes (SpCEco) eingeschaltet. Bei eingeschalteter Anlage wird auf die eingestellten Komfort-Sollwerte geregelt (Ventilatorstufen und Sollwerte aller Regelkreise).

Hinweis

Der Stützbetrieb kann nur eingeschaltet werden, wenn keine Störungsmeldungen, die die Anlage ausschalten, anliegen.
20 Umluftbetrieb (Grundtyp A)

Die Funktion Umluftbetrieb (Prekomfort) hat die Aufgabe, während der Betriebsart Prekomfort bei permanent eingeschaltetem(n) Ventilator (en) und 100% Umluftbetrieb der Mischluftklappen, das Raumklima auf Prekomfort-Sollwerte zu regeln.

20.1 Aktivieren der Funktion

Die Funktion "Umluftbetrieb (Prekomfort)" kann im Grundtyp A aktiviert werden.

- Hauptmenü > Inbetriebnahme > Einstellungen > ...
- Hauptmenü > Einstellungen > Betriebsart >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>feststellen</td>
<td>Anlagenbetriebsart</td>
<td>Normalbetrieb, Stützbetrieb, Umluftbetrieb</td>
</tr>
</tbody>
</table>

Die Umluftfunktion ist aktiv, sobald als Anlagenbetrieb Umluftbetrieb gewählt und die Mischluftklappe konfiguriert ist (siehe Kapitel 10.5.1).

20.2 Wirkungsweise Umluftbetrieb

Während dem Umluftbetrieb ist die Anlage mit allen konfigurierten Aggregaten (Ausnahme Klappenblock) und Reglern permanent eingeschaltet. Bei eingeschalteter Anlage wird jeweils auf die Prekomfort-Sollwerte geregelt.

Hinweise

Ansteuerung der Mischluftklappe:
- Bei Umluftbetrieb wird die Aussenluftklappe mit 0% angesteuert, d. h. die Mischluftklappe ist in der Position 100 % offen

Ansteuerung der Zuluft- und Abluftventilatoren:
- Bei Umluftbetrieb ist der Zuluftventilator immer eingeschaltet. Die Einschaltung des Abluftventilators ist abhängig vom Einstellparameter Stütz-/Umluftbetrieb (siehe Kapitel 10.1.13 "Stütz-/Umluftbetrieb (Grundtyp A)"). Die beiden Anwendungsbeispiele veranschaulichen dies.
- Bei 2-stufigen Ventilatoren und konfigurierter Raum/Zuluft- oder Abluft/Zuluft-Kaskadenregelung kann die Stufenumschaltung nach Wärme-/Kältebedarf erfolgen (siehe Kapitel 11.6.3 "Zweite Ventilatorstufe nach Wärme-/Kältebedarf")

Anwendungsbeispiel 1

Anwendungsbeispiel 2
Automatische Umschaltung von Umluftbetrieb (Prekomfort) nach Normalbetrieb (Komfort):

- Sofern ein Luftqualitätsregler konfiguriert ist, wird bei Überschreitung des Luftqualitäts-Prekomfort-Sollwertes auf Normalbetrieb (Komfort) umgeschaltet. Nach dem Erreichen einer behaglichen Luftqualität wird wieder auf Umluftbetrieb (Prekomfort) zurückgeschaltet

- Bei 2-stufigen Ventilatoren und konfiguriertem Luftqualitätsregler kann die Stufenumschaltung nach Luftqualität erfolgen (siehe Kapitel 16.4 "Umschalten der Ventilatorstufen (Grundtyp A)"

20.2.1 Sollwerte für die Regelung bei Umluftbetrieb (Prekomfort)

Einstellwerte

<table>
<thead>
<tr>
<th>Hauptmenü > Inbetriebnahme > Einstellungen > oder Hauptmenü > Einstellungen > Regler 1 > Raum-Sollwerte ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>⬤: Prekomfort-Kühl-Sollwert</td>
</tr>
<tr>
<td>⬤: Prekomfort-Heiz-Sollwert</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hauptmenü > Inbetriebnahme > Einstellungen > oder Hauptmenü > Einstellungen > Regler 1 > Sollwerte ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>⬤: Prekomfort-Sollwert oben</td>
</tr>
<tr>
<td>⬤: Prekomfort-Sollwert unten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hauptmenü > Inbetriebnahme > Einstellungen > oder Hauptmenü > Einstellungen > Luftqualitätsregler ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>⬤: Luftqualität-Sollwert</td>
</tr>
<tr>
<td>Sollwert Ventilatorstufe 2</td>
</tr>
</tbody>
</table>

Deaktivierung des Prekomfort-Luftqualitätssollwerts durch Einstellung auf "---".
21 Nachtkühlung (Grundtyp A)

Zweck

Die Funktion Nachtkühlung hat die Aufgabe, den Raum im Sommer während der Nichtbelegungszeit mit der tieferen Aussentemperatur vorzukühlen. So kann Kühlenergie während der Belegungszeit gespart werden.

21.1 Aktivieren des Blocks

Die Funktion kann nur für Grundtyp A aktiviert werden. Zusätzlich müssen folgende Bedingungen erfüllt sein:
- Die Raumtemperatur und die Aussentemperatur müssen verfügbar sein
- Ventilator muss aktiviert sein

Die Funktion "Nachtkühlung" wird deaktiviert, indem die "Vorkühltdauer maximal" auf 0 min gesetzt wird.

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ..., oder
Hauptmenü > Einstellungen > Nachtkühlung >

<table>
<thead>
<tr>
<th>Bedienelemente</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aussentemperatur-Grenzwert</td>
<td>0...50 °C</td>
<td>12 °C</td>
</tr>
<tr>
<td>Raum-Aussentemp.-Delta</td>
<td>0.0...20.0 K</td>
<td>5.0 K</td>
</tr>
<tr>
<td>Betriebszeit minimal</td>
<td>0...720 min</td>
<td>30 min</td>
</tr>
<tr>
<td>Vorkühltdauer maximal</td>
<td>0...2880 min</td>
<td>0 min</td>
</tr>
<tr>
<td>Stufe</td>
<td>Stufe 1, Stufe 2</td>
<td>Stufe 1</td>
</tr>
</tbody>
</table>

21.2 Wirkungsweise

- Raumtemperatur > (Komfort-Heiz-Sollwert plus 1 K)
- Aussentemperatur > "Aussentemperatur-Grenzwert"
- (Raumtemperatur minus Aussentemperatur) > "Raum-Aussentemp.-Delta"
- Zeit bis zur nächsten Einschaltung der Anlage nach Zeitschaltuhr oder Ferien-/Sondertagsprogramm < "Vorkühltdauer maximal"; d. h. die "Vorkühltdauer maximal" kann eingehalten werden
- Regler muss in der Betriebsart Economy sein

Ausschaltsbedingungen

- Raumtemperatur < Komfort-Heiz-Sollwert
- Aussentemperatur < Aussentemperatur-Grenzwert
- (Raumtemperatur minus Aussentemperatur) < Raum-Aussentemp.-Delta

Bei diesen Bedingungen wird die minimale Betriebszeit der Nachtkühlfunktion eingehalten.

Während der Nachtkühlung ist die Aussenluftklappe (siehe Kapitel 10.5 "Mischluftklappe (Grundtyp A, P)") offen, die Ventilatoren sind gemäss der eingestellten Stufe in Betrieb. Bei drehzahlgeregeltem Ventilator (Regelung auf konstanten Druck/Volumenstrom) läuft der Ventilator auf der "Drehzahl minimal". Alle anderen Aggregate sind gesperrt.
21.3 Fehlerbehandlung

Die Überwachung der Raumtemperatur ist in Kapitel 8.5, die Überwachung der Aussentemperatur ist in Kapitel 8.4 beschrieben.

Sind Raumtemperatur und Aussentemperatur nicht verfügbar, so wird die Funktion "Nachtkühlung" inaktiv gesetzt.
22 Einschaltoptimierung (Grundtyp A)

Die Funktion Einschaltoptimierung wärmt bzw. kühlt den Raum vor dem automatischen Wechsel der Betriebsart auf Komfort auf die gewünschte Raumtemperatur vor. Dies gilt nur beim Umschalten der Betriebsart auf Komfort (z. B. beim Wechsel von Economy auf Komfort).

Die Anlage wird dann eingeschaltet, wenn der Sollwert der nachfolgenden Betriebsart noch erreicht werden kann. Die Schaltuhr kann so auf die effektive Nutzung des Raumes eingestellt werden. Die effektive Betriebsdauer der Anlage wird wesentlich gekürzt, da die Vorkühl- bzw. Vorheizdauer optimiert wird.

22.1 Aktivieren der Funktion

Die Funktion Einschaltoptimierung kann im Grundtyp A aktiviert werden.

Es stehen zwei Arten von Einschaltoptimierungen zur Auswahl:

1. "Ein: Werte fix" (Raumtemperatur-Absenkung bzw. -Anstieg)
2. "Ein: Werte adaptiert" (automatische Adaption der Einstellwerte)

Bei der zweiten Option optimiert der Regler die Einstellwerte automatisch und passt sie an die Bedingungen der jeweiligen Anlage an.

Einstellwerte

- **Hauptmenü > Inbetriebnahme > Einstellungen > ... oder**
- **Hauptmenü > Einstellungen > Einschaltoptimierung >**

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einschaltoptimierung</td>
<td>Aus, Ein: Werte fix, Ein: Werte adaptiert</td>
<td>Aus</td>
</tr>
</tbody>
</table>

Die Einschaltoptimierung verwendet die Raumtemperatur zur Berechnung. Eine Berechnung anhand der Ablufttemperatur wird nicht unterstützt.

Hinweis

22.2 Einschaltoptimierung Kühlen und Heizen

Einschaltoptimierung
Kühlen

Schalthour

\[\text{TR [°]} \]

Verlauf Temperatur

\[\text{SpCEco} \]

\[\text{SpCCmf} \]

\[\text{Eco} \]

\[\text{Cmf} \]

Vorverlegungszeit Ein max

Anlage

Ein

Aus

3150D37

Einschaltoptimierung
Heizen

Schalthour

\[\text{TR [°]} \]

Verlauf Temperatur

\[\text{SpCCmf} \]

\[\text{SpCEco} \]

\[\text{Eco} \]

\[\text{Cmf} \]

Vorheizdauer

Vorverlegungszeit Ein max

Anlage

Ein

Aus

3150D38
Einstellwerte Kühlen

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumtemperatur-Absenkung</td>
<td>1...600 min/K</td>
<td>30 min/K</td>
</tr>
</tbody>
</table>

Einstellwerte Heizen

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumtemperatur-Anstieg</td>
<td>1...600 min/K</td>
<td>30 min/K</td>
</tr>
</tbody>
</table>

Bei automatischer Adaptierung der Einstellwerte werden die effektiv erreichten Werte nach jeder durchgeführten Einschaltoptimierung als neue Rechengrundlage verwendet. Wenn die errechneten Werte und die eingesetzten Werte zu stark auseinander liegen, werden die eingestellten Werte automatisch angepasst, damit bei der nächsten Optimierung bessere Resultate erzielt werden können.

Anzeigewert Kühlen

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumtemp.-Absenkung</td>
<td>1...600 min/K</td>
<td>Nur Anzeigewert für Diagnose</td>
</tr>
</tbody>
</table>

Anzeigewert Heizen

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumtemp.-Anstieg</td>
<td>1...600 min/K</td>
<td>Nur Anzeigewert für Diagnose</td>
</tr>
</tbody>
</table>

Vorverlegungszeit Ein max

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorverlegungszeit Ein max</td>
<td>0...2880 min</td>
<td>90 min</td>
</tr>
</tbody>
</table>

Während der Einschaltoptimierung werden alle Anlagenelemente gemäß der nachfolgenden Betriebsart geschaltet. Um die Sollwerte während der Einschaltoptimierung schnell und effektiv zu erreichen, können die Zuluftbegrenzungswerte temporär erweitert werden.

Zuluft-Maximalbegrenz.-Delta

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluft-Maximalbegrenz.-Delta</td>
<td>0.0...50.0 K</td>
<td>0.0 K</td>
</tr>
</tbody>
</table>

Zuluft-Minimalbegrenz.-Delta

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluft-Minimalbegrenz.-Delta</td>
<td>0.0...50.0 K</td>
<td>0.0 K</td>
</tr>
</tbody>
</table>

Der aktuelle Zustand der Einschaltoptimierung wird am Bediengerät angezeigt.
Hauptmenü > Anlagenbetrieb>

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grund</td>
<td>Anzeige der aktuellen Anlagenbetriebsart [Einschaltoptimierung]</td>
</tr>
</tbody>
</table>

Hinweis

Die Einschaltoptimierung ist nur im Zusammenhang mit der Schaltuhr freigegeben.

22.2.1 Prioritäten

Für die Aktivierung der Einschaltoptimierung gelten folgende Prioritäten:
1. EIN/AUS während des Verdrahtungstests
2. Entrauchen
3. Brandabschaltung
4. Frost
5. Vorgabe der Raum- / Anlagebetriebsart
6. Einschaltoptimierung
7. Stützbetrieb
8. Nachtlüften
23 Ventilatordrehzahlregler, bedarfsgeführt (Grundtyp P)

23.1 Allgemeines

Der „Zuluftventilator“ bzw. „Abluftventilator“ ist für die bedarfsgeführte Drehzahlregelung mit VVS-Einzelraumreglern bestimmt. Die Einzelraumregler sind über KNX verbunden und tauschen relevante Betriebsdaten aus. Sie führen folgende Funktionen aus:

- Bedarfsgeführte Drehzahlregelung mit Drucksollwertoptimierung (folgendes Kapitel)
- Bedarfsgeführter Anlagenbetrieb über KNX Bus (Siehe 12.3)
- Bedarfsgeführte Zulufttemperaturregelung (Siehe 12.4)

23.2 Bedarfsgeführte Drehzahlregelung mit Drucksollwertoptimierung

Die Einzelraumregler senden ihre jeweiligen Klappenstellung (0 - 100%) an die Primärluftaufbereitungsanlage. Dabei ist 0% = Klappe geschlossen und 100% = Klappe offen.

Hinweis
Das Signal entspricht nicht dem Ausgangssignal der Einzelraumregler an den Volumenstromregler. Die Klappenstellungen werden gesammelt und ausgewertet und für die Optimierung der Kanaldrucksollwerte verwendet.

Funktionsprinzip
Anlagenebene:
Die Ventilatordrehzahl wird so optimiert, dass die vom Volumenstromregler angesteuerten Luftklappen möglichst ganz geöffnet sind. So haben die Volumenstromregler bzw. die Räume immer genügend Luft, ohne dass im Volumenstromregler unnötig Druck abgebaut werden muss.

23.3 Einstellen der Drucksollwertführung nach Klappenstellung

Folgende Arten der Drucksollwert-Optimierung stehen zur Verfügung:
- Zuluft: Druck-Sollwert Zuluftventilator in Abhängigkeit der VVS-Klappenstellung Zuluft. Siehe Anwendungsbeispiel 1

Siehe Kap. 23.4

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienelemente</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Druckoptimierung</td>
<td>Keine, Zuluft, Zuluft-Abluft parallel, Zuluft und Abluft</td>
<td>Keine</td>
</tr>
</tbody>
</table>

Die Druck-Sollwert Reduktion ist standardmäßig ausgeschaltet (= 0). Mithilfe des Einstellwerts „Drehzahl minimal“ wird sichergestellt, dass die minimale Drehzahl eingehalten wird.

Die ausgewerteten Klappenstellungen werden auf den Sollwert VVS Zuluftklappen bzw. Sollwert VVS Abluftklappen geregelt.
Einfluss der Klappenstellung auf die Drucksollwertführung

- Fall 1: Ausgewertete Klappenstellungen > Sollwert VVS Klappenstellung
 Die Druckregelung versorgt die Anlage mit dem optimalen Druck-Sollwert. Es ist keine Reduktion oder Erhöhung des Druck-Sollwerts erforderlich, es besteht kein Optimierungspotential.

- Fall 2: Ausgewertete Klappenstellungen < Sollwert VVS Klappenstellung

Einstellwerte

| Hauptmenü > Inbetriebnahme > Einstellungen > ... oder Hauptmenü > Einstellungen > Aggregate > Zuluftventilator > Hauptmenü > Einstellungen > Aggregate > Abluftventilator > |
|---|---|---|
| Bedienzeile | Bereich | Werkeinstellung |
| Druck-Sollwert | Je nach gewähltem Eingangsbezeichner | 500 Pa / 30 mbar / 3 bar |
| Druck-Sollwert Reduktion | Je nach gewähltem Eingangsbezeichner | 0 Pa / 0 mbar / 0 bar |
| Druckregler-Xp | Je nach gewähltem Eingangsbezeichner | 500 Pa / 50 mbar / 5 bar |
| Druckregler-Tn | 00.00…10.0 m:s | 02.00 m:s |
| Drehzahl minimal | 0…100 % | 0% |
| Sollwert VVS Zuluftklappen | 0…100% | 80% |
| Sollwert VVS Abluftklappen | 0…100% | 80% |

Variante mit konstanter Raumüberdruckregelung

Wenn der Abluftventilator als konstante Raumüberdruckregelung ausgeführt wird, sind die Einstellwerte entsprechend anzupassen (z. B. Druck-Sollwert = 25 Pa, Sollwert-Reduktion = 0 Pa usw.).

Regelverhalten
Die Geschwindigkeit, mit der die Optimierung der Drucksollwerte bzw. der Drehzahl erfolgt, kann mit dem Einstellparameter "Regelverhalten" definiert werden.

Auswertung Anforderung
Auch kann die Art, wie die gesammelten Klappenstellungen ausgewertet werden, eingestellt werden.

- Maximal: Für die Sollwertführung wird nur die grösste Klappenstellung berücksichtigt
- Durchschnitt: Für die Sollwertführung wird der Mittelwert aller Klappenstellungen berücksichtigt

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder Hauptmenü > Einstellungen > Aggregate > Zuluftventilator >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelverhalten</td>
<td>Langsam, Mittel, Schnell</td>
<td>Mittel</td>
</tr>
<tr>
<td>Auswertung Anforderung</td>
<td>Maximal, Durchschnitt</td>
<td>Maximal</td>
</tr>
</tbody>
</table>

Diese Einstellungen werden beim Zuluftventilator vorgenommen und gelten auch für den Abluftventilator.

Vorausgesetzte Einstellungen

- Wird die lokale Schaltuhr 1 am RMU-Regler aktiviert, muss der Wert für die „Geografische Zone (Apartment)“ eingestellt werden. Weitere Information in Kapitel 28.2.2 (Untermenü "Raum")
- Der Einstellwert "Luftverteilezone" definiert die Zugehörigkeit der Einzelraumregler zu der entsprechenden Primärluftaufbereitungsanlage. Weitere Information in Kapitel 28.2.5 (Untermenü "Verteilzonen")
23.4 Anwendungsbeispiele

Die nachfolgenden Anwendungsbeispiele beinhalten die erforderlichen Konfigurationen und Einstellwerte für die Primärluftaufbereitung Grundtyp P in der Kombination mit den VVS-Einzelraumreglern und den Volumenstromreglern.

Beispiel 1

- Primärluftaufbereitung mit Zuluftventilator und Mischluftklappe
- Einzelraumregelung (RDG400KN) für VVS Einkanalsystem mit Zuluft Kompaktregler mit analogem Klappenstellungssignal
- Datenaustausch zwischen der Primärluftaufbereitung und den Einzelraumreglern via KNX mit den folgenden Funktionen:
 - Optimierung der Druckannahmen Zuluft mittels Klappenstellungen VVS Zuluft Kompaktregler
 - Bedarfsgeführter Anlagenbetrieb und Optimierung der Zulufttemperatur-Sollwerte nach Wärme- und Kälte-Bedarfssignalen

Übersicht Konfiguration
Primärluftaufbereitung RMU7x0B

<table>
<thead>
<tr>
<th>Einstellwerte</th>
<th>Zuluft</th>
<th>Abluft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelungsart</td>
<td>Kanaldruck (DP stat.)</td>
<td>----</td>
</tr>
<tr>
<td>Druckoptimierung</td>
<td>Zuluft</td>
<td>----</td>
</tr>
<tr>
<td>Druck-Sollwert</td>
<td>220 Pa</td>
<td>----</td>
</tr>
<tr>
<td>Druck-Sollwert Reduktion</td>
<td>160 Pa</td>
<td>----</td>
</tr>
<tr>
<td>VVS-Zuluftklappenstellung (0…100%)</td>
<td>----</td>
<td></td>
</tr>
</tbody>
</table>

Betriebsfähige Zulufttemperaturregelung

<table>
<thead>
<tr>
<th>Zuluftgrenzwert max</th>
<th>26°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluftgrenzwert min</td>
<td>15°C</td>
</tr>
<tr>
<td>Zuluft-Wärmebedarf</td>
<td>(0…100%)</td>
</tr>
<tr>
<td>Zuluft-Kältebedarf</td>
<td>(0…100%)</td>
</tr>
</tbody>
</table>

Einzelraumregelung RDG400KN, VVS Regler G…B181.1E

<table>
<thead>
<tr>
<th>Zuluft</th>
<th>Abluft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anordnung VVS</td>
<td>Ja</td>
</tr>
<tr>
<td>Klappenstellungssignal, Typ</td>
<td>Ja - analog 0..10V DC via RDG400KN</td>
</tr>
<tr>
<td>Sollwertführung Ventilatoren</td>
<td>Ja</td>
</tr>
</tbody>
</table>
Beispiel 2

- Primärluftaufbereitung mit Zuluft- / Abluftventilator
- Einzelraumregelung (RDG400KN) für VVS Einkanal-system mit Zuluft Kompaktregler mit analogem Klappenstellungssignal
- Datenaustausch zwischen der Primärluftaufbereitung und den Einzelraumreglern via KNX mit den folgenden Funktionen:
 - Optimierung der Drucksollwerte Zuluft und Abluft mittels Klappenstellungen VVS Zuluft Kompaktregler
 - Bedarfsgeführter Anlagenbetrieb und Optimierung der Zulufttemperatur-Sollwerte nach Wärme- und Kälte-Bedarfssignalen

Übersicht Konfiguration
Primärluftaufbereitung RMU7x0B

<table>
<thead>
<tr>
<th>Einstellwerte</th>
<th>Zuluft Ventilator</th>
<th>Abluft Ventilator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelungsart</td>
<td>Kanaldruck (DP stat.)</td>
<td>Zuluft-Abluft parallel</td>
</tr>
<tr>
<td>Druckoptimierung</td>
<td>Zuluft-Abluft parallel</td>
<td></td>
</tr>
<tr>
<td>Druck-Sollwert</td>
<td>220 Pa</td>
<td>230 Pa</td>
</tr>
<tr>
<td>Druck-Sollwert Reduktion</td>
<td>160 Pa</td>
<td>160 Pa</td>
</tr>
<tr>
<td>VVS-Zuluftklappenstellung (0...100%)</td>
<td>VVS-Abluftklappenstellung (0...100%)</td>
<td></td>
</tr>
</tbody>
</table>

Bedarfsgeführte Zulufttemperaturregelung

Zuluftgrenzwert max	26°C
Zuluftgrenzwert min	15°C
Zuluft-Wärmebedarf	(0...100%)
Zuluft-Kältebedarf	(0...100%)

Einzelaumregelung RDG400KN, VVS Regler G...B181.1E

<table>
<thead>
<tr>
<th>Zuluft</th>
<th>Abluft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anordnung VVS</td>
<td>Ja</td>
</tr>
<tr>
<td>Klappenstellungssignal - Typ</td>
<td>Ja - analog 0..10V DC via RDG400KN</td>
</tr>
<tr>
<td>Sollwertführung Ventilatoren</td>
<td>Ja</td>
</tr>
</tbody>
</table>
Beispiel 3

- Primärluftaufbereitung mit Zuluft-/Abluftventilator
- Einzelraumregelung (RDG400KN) für VVS Einkanalsystem mit kommunikativen Zuluft-/Abluft Kompatreglern mit KNX Klappenstellungs signal
- Datenaustausch zwischen der Primärluftaufbereitung und den Einzelraumreglern via KNX mit den folgenden Funktionen:
 - Optimierung der Drucksollwerte Zuluft und Abluft mittels Klappenstellungen VVS Zuluft (Master) und Abluft (Slave) Kompatreglern
 - Bedarfsgeführter Anlagenbetrieb und Optimierung der Zulufttemperaturen-Sollwerte nach Wärme- und Kälte-Bedarfssignalen

Übersicht Konfiguration
Primärluftaufbereitung RMU7x0B

<table>
<thead>
<tr>
<th>Einstellwerte</th>
<th>Zuluft Ventilator</th>
<th>Abluft Ventilator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelungsart</td>
<td>Kanaldruck (DP stat.)</td>
<td>Kanaldruck (DP stat.)</td>
</tr>
<tr>
<td>Druckoptimierung</td>
<td>Zuluft und Abluft</td>
<td>Zuluft und Abluft</td>
</tr>
<tr>
<td>Druck-Sollwert</td>
<td>220 Pa</td>
<td>230 Pa</td>
</tr>
<tr>
<td>Druck-Sollwert Reduktion</td>
<td>160 Pa</td>
<td>160 Pa</td>
</tr>
<tr>
<td>VVS-Zuluftklappenstellung (0…100%)</td>
<td></td>
<td>VVS-Abluftklappenstellung (0…100%)</td>
</tr>
</tbody>
</table>

Bedarfsgeführte Zulufttemperaturregelung

- Zuluftgrenzwert max: 26°C
- Zuluftgrenzwert min: 15°C
- Zuluft-Wärmebedarf: (0…100%)
- Zuluft-Kältebedarf: (0…100%)

Einzelraumregelung RDG400KN, networked VVS G..B181.1E/KN

<table>
<thead>
<tr>
<th>Zuluft</th>
<th>Abluft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anordnung VVS</td>
<td>Ja (Master)</td>
</tr>
<tr>
<td>Klappenstellungssignal -Typ</td>
<td>Ja - KNX Bus</td>
</tr>
<tr>
<td>Sollwertführung Ventilatoren</td>
<td>Ja</td>
</tr>
</tbody>
</table>
23.5 Diagnose Drucksollwertoptimierung

Für die Überprüfung der Drucksollwertführung und der aktuellen Anlagensituation stehen die nachfolgenden Menüpunkte zur Auswahl:

Hauptmenü > Diagnose Luftkanalnetz > Druckoptimierung >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Druckoptimierung</td>
<td>Art der Druckoptimierung</td>
</tr>
<tr>
<td>Zuluft</td>
<td></td>
</tr>
<tr>
<td>VVS</td>
<td>Anzeigewert der gesammelten Zuluftklappenstellungen</td>
</tr>
<tr>
<td>Zuluftventilator</td>
<td>Xx %</td>
</tr>
<tr>
<td>Druck-Istwert</td>
<td>Anzeigewert</td>
</tr>
<tr>
<td>Druck-Sollwert aktuell</td>
<td>Anzeigewert (dp-Sollwertführung Optimierung)</td>
</tr>
<tr>
<td>Druck-Sollwert</td>
<td>Anzeige Einstellwert</td>
</tr>
<tr>
<td>Druck-Sollwert Reduktion</td>
<td>Anzeige Einstellwert</td>
</tr>
<tr>
<td>Abluft</td>
<td></td>
</tr>
<tr>
<td>VVS</td>
<td>1)</td>
</tr>
<tr>
<td>Abluftventilator</td>
<td>Xx %</td>
</tr>
<tr>
<td>Druck-Istwert</td>
<td>Anzeigewert</td>
</tr>
<tr>
<td>Druck-Sollwert aktuell</td>
<td>Anzeigewert (dp-Sollwertführung Optimierung)</td>
</tr>
<tr>
<td>Druck-Sollwert</td>
<td>Anzeige Einstellwert</td>
</tr>
<tr>
<td>Druck-Sollwert Reduktion</td>
<td>Anzeige Einstellwert</td>
</tr>
</tbody>
</table>

1) Anzeigewert (nur bei Networking field device vorhanden) der gesammelten Abluft-Klappenstellungen

Siehe Kapitel 12.4.

Bedarfsgeführte Zulufttemperaturregelung
23.6 Luftvolumenstromabgleich

Vorgehen Luftvolumenstromabgleich

Vorbedingungen
- Alle Geräte sind eingebaut und die Inbetriebnahme ist abgeschlossen
- Die Kommunikation zwischen den Geräten ist lauffähig und alle Zoneneinstellungen (geografische Zone / Luftverteilzonen) sind überprüft

Zwangssteuerung

- Hauptmenü > Luftvolumenstromabgleich >
- Simulation VVS Zuluft ----, Vmax
- Simulation VVS Abluft ----, Vmax

Störungsmeldungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3931</td>
<td>Simulation VVS Zuluft</td>
<td>Nicht dring. Meldung; muss nicht quittiert werden</td>
</tr>
<tr>
<td>3932</td>
<td>Simulation VVS Abluft</td>
<td>Nicht dring. Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

23.7 Allgemeine Inbetriebnahmehinweise

Bei der Inbetriebnahme sind die folgenden Punkte zu beachten:
- Zeitabhängige Einstellwerte wie z. B. der Vorbeord von Brandschutzklappen bzw. Klappen, Einschalverzögerung Ventilatoren, Anfahrzeit und andere Einstellwerte, die Einfluss auf das Anlagestartverhalten haben können
- Zeitabhängige Vorgaben wie die Nachlaufzeit bei Anwendung mit Elektrolufterhitzer
- Funktions- und Kommunikationstests der Raumregelung und der entsprechenden Volumenstromregler sind erfolgreich durchgeführt
- Beim Einschalten der Primärlüftungsanlage ist sicherzustellen, dass die Volumenstromregler geöffnet sind und die Ventilatoren nicht gegen geschlossene Klappen starten können.

Ein Nichtbeachten dieser Punkte kann zu Beschädigung von Aggregaten und Anlagenteilen führen!
24 Störungen

24.1 Aufgabe und Aktivierung

Aufgabe

Der Funktionsblock "Störungen" sammelt alle auftretenden Störungsmeldungen, meldet diese in der Störungsanzeige, an den Störungsrelais und via Bus. Es wird unterschieden zwischen "Universelle Störungseingänge" und "Vordefinierte Störungseingänge" (Filterüberwachung, Brandabschaltung, Entrauchen).

Aktivierung

Der Störungsblock wird durch die Konfiguration von Störmeldeneingängen 1...10 oder durch Zuordnung eines Störungsrelais aktiviert.

Hinweis

Viele Störungen werden automatisch erfasst und müssen nicht speziell im Funktionsblock "Störungen" konfiguriert werden. Diese Störungen sind jeweils bei der entsprechenden Funktion beschrieben. Für die Anzeige dieser Störungen muss der Störungsblock nicht aktiviert sein.

24.2 Kategorien von Störungen

Bei der Projektierung werden Störungsmeldungen anhand von 3 Kategorien unterschieden:

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Wert</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quittierung</td>
<td>Keine</td>
<td>ausführliche Informationen in Kapitel 29.3.2</td>
</tr>
<tr>
<td></td>
<td>Quittieren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quittieren und Entriegeln</td>
<td></td>
</tr>
<tr>
<td>Priorität</td>
<td>Dringend</td>
<td>Dies sind Störungsmeldungen, die die Anlage gefährden oder bei denen ein einwandfreier Betrieb der Anlage nicht mehr sichergestellt werden kann (z. B. "Frost", "Entrauchung")</td>
</tr>
<tr>
<td></td>
<td>Nicht dringend</td>
<td>Dies sind Störungsmeldungen, die den Anlagebetrieb nicht unmittelbar gefährden (z. B. "Filter verschmutzt", "Aussentemp.-Fühlerfehler")</td>
</tr>
<tr>
<td>Wirkung</td>
<td>Kein Stopp</td>
<td>Anlagenstop: Bei Störungsmeldungen, die eine Gefahr für die Anlage sind (z. B. "Zuluft-Überlast").</td>
</tr>
<tr>
<td></td>
<td>Stopp</td>
<td>Keine Anlagenstop: Bei Störungsmeldungen, die den Anlagebetrieb nicht gefährden (z. B. "Aussentemp.-Fühlerfehler").</td>
</tr>
</tbody>
</table>
24.3 Universelle Störungseingänge (1...10)

Anschlüsse
Es stehen mit dem Funktionsblock "Störungen" 10 universelle Störungseingänge zur Verfügung. An diese können beliebige analoge oder digitale Signale angeschlossen werden.

Konfiguration

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Störungseingang 1</td>
<td>---, N.X1, N.X2, ...</td>
</tr>
<tr>
<td>Störungseingang 10</td>
<td>---, N.X1, N.X2, ...</td>
</tr>
</tbody>
</table>

Einstellungen
Für jede Störungsmeldung können folgende Einstellungen vorgenommen werden:
- Störungsmeldeverzögerung:
 Die Zeit die vergeht, bis eine anstehende Störung eine Störungsmeldung generiert.
- Störungsquittierung
- Störungswirkung
- Störungspriorität
- Grenzwert Störung Ein: Grenzwert, ab welchem die Störungsmeldung erzeugt wird
- Grenzwert Störung Aus: Grenzwert für den Normalzustand

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Störungsmeldeverzögerung</td>
<td>00.00...59.55 m:s</td>
<td>00.00 m:s</td>
</tr>
<tr>
<td>Störungsquittierung</td>
<td>Keine,Quitieren, Quittieren und Entriegeln</td>
<td>Keine</td>
</tr>
<tr>
<td>Störungspriorität</td>
<td>Dringend, Nicht dringend</td>
<td>Nicht dringend</td>
</tr>
<tr>
<td>Störungswirkung</td>
<td>Kein Stopp, Stopp</td>
<td>Kein Stopp</td>
</tr>
<tr>
<td>Grenzwert Störung Ein</td>
<td>Abhängig von gewählten Typ</td>
<td>Je nach Typ</td>
</tr>
<tr>
<td>Grenzwert Störung Aus</td>
<td>Abhängig von gewählten Typ</td>
<td>Je nach Typ</td>
</tr>
</tbody>
</table>

Hinweise
- Wenn die obere und untere Grenze eines Messwertes überwacht werden soll, dann ist das Signal auf zwei Störungseingänge zu verbinden.
- Zur Überwachung der unteren Grenze ist in der Bedienzeile "Grenzwert Störung Ein" kleiner als "Grenzwert Störung Aus" einzustellen. Dadurch wird eine Störungsmeldung generiert, wenn die Messgrösse tiefer ist als der "Grenzwert Störung Ein".
- Die Differenz zwischen "Grenzwert Störung Ein" und "Grenzwert Störung Aus" bildet die Hysterese.
- Wenn "Grenzwert Störung Ein" gleich "Grenzwert Störung Aus" gesetzt wird, dann wird keine Störungsmeldung generiert.
Die Texte für die universellen Störungseingänge können über die Bedienung angepasst werden. Sie werden im Fall einer Störung lokal angezeigt und über den Bus übermittelt.

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
Hauptmenü > Einstellungen > Störungen > Störungseingang 1...10 >

<table>
<thead>
<tr>
<th>Störungstexte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Störungstext x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Störungsmeldungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>9000</td>
</tr>
<tr>
<td>9001</td>
</tr>
<tr>
<td>9002</td>
</tr>
<tr>
<td>9003</td>
</tr>
<tr>
<td>9004</td>
</tr>
<tr>
<td>9005</td>
</tr>
<tr>
<td>9006</td>
</tr>
<tr>
<td>9007</td>
</tr>
<tr>
<td>9008</td>
</tr>
<tr>
<td>9009</td>
</tr>
<tr>
<td>9010</td>
</tr>
</tbody>
</table>

>1 Störungseingang in Störung

24.4 Vordefinierte Störungseingänge

Je nach Grundtyp des Reglers stehen vordefinierte Störungseingänge zu Verfügung:
- Filterüberwachung
- Brandabschaltung
- Entrauchung Zuluft
- Entrauchung Abluft

24.4.1 Filterüberwachung (Grundtyp A und P)

Um die Filterüberwachung zu aktivieren, muss ein Eingang zugeordnet werden (Grundtyp A und P).

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Störungen >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterüberwachung</td>
<td>---, N.X1, N.X2, ...</td>
</tr>
</tbody>
</table>

Für die Filterüberwachung können folgende Einstellungen vorgenommen werden:
- Störungsmeldeverzögerung:
 - Die Zeit die vergeht, bis eine anstehende Störung eine Störungsmeldung generiert.
- Grenzwert Störung Ein: Grenzwert, ab welchem die Störungsmeldung erzeugt wird
- Grenzwert Störung Aus: Grenzwert für den Normalzustand
Der Eingang dient der Überwachung und Meldung eines Filterwächters. Wenn der Druckverlust über dem Filter infolge Filterverschmutzung zu gross wird, kann eine Störungsmeldung generiert werden.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3911</td>
<td>Filter verschmutzt</td>
<td>Nicht dringende Meldung; muss quittiert und entriegelt werden</td>
</tr>
</tbody>
</table>

24.4.2 Brandabschaltung (Grundtyp A und P)

Über ein digitales Signal an dem Eingang "Brandabschaltung" kann die Lüftungsanlage in die Betriebsart "Brandabschaltung" geschaltet werden.

Die Funktion wird aktiviert, indem ein digitaler Eingang Xx am Störungsblock (Grundtyp A) bzw. an der Schaltuhr 1 (Grundtyp P) konfiguriert wird:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3900</td>
<td>Brandabschaltung</td>
<td>Dringende Meldung mit Anlagenstopp, Meldung muss quittiert und entriegelt werden</td>
</tr>
</tbody>
</table>

Die Störungsriorität ist fix "Dringend", eine Brandabschaltung muss immer quittiert und entriegelt werden.

24.4.3 Entrauchung (Grundtyp A und P)

Über ein digitales Signal bzw. zwei digitale Signale an seinen Eingängen "Entrauchung Zuluft" und "Entrauchung Abluft" kann die Lüftungsanlage in die Betriebsart "Entrauchung" geschaltet werden.
Die Funktion wird aktiviert, indem mindestens ein digitaler Eingang Xx am Störungsblock (Grundtyp A) bzw. an der Schaltuhr 1 (Grundtyp P) konfiguriert wird:

- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Störungen (Grundtyp A)
- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Schaltuhr 1 (Grundtyp P)

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrauchung Zuluft</td>
<td>---, N.X1, N.X2, ... (nur digitale Eingänge)</td>
</tr>
<tr>
<td>Entrauchung Abluft</td>
<td>---, N.X1, N.X2, ... (nur digitale Eingänge)</td>
</tr>
</tbody>
</table>

Bei aktivem Signal am Eingang "Entrauchung Zuluft" wird direkt der Zuluftventilator und am Eingang "Entrauchung Abluft" der Abluftventilator notfallmässig eingeschaltet.

Beim Grundtyp P kann am RMU-Regler zusätzlich eine geografische Zone eingegeben werden. Die Schaltuhr 1 bzw. die Signale der Entrauchung wirken dann zusätzlich in dieser Zone. Es ist die gleiche Funktionalität wie in der Steuerzentrale RMB795 (siehe Basisdokumentation CE1P3121de, Kap. 8.9).

Hinweise

- Wenn die Entrauchung mit Zuluft und Abluft erfolgen soll, dann können beide Eingänge vom gleichen digitalen Eingang Xx konfiguriert werden.
- Das EIN durch Entrauchen hat eine höhere Priorität als das AUS durch Brandabschaltung (siehe Kap. 6.13 Prioritäten der Betriebsarten).
- Soll das Entrauchen erst freigegeben werden bei einer anliegenden Brandabschaltung ist dies hardwaremässig zu lösen.

Die Ventilatoren werden im Entrauchungsbetrieb auf der maximalen Stufe (z.B. Stufe 2 bei 2-stufigem Betrieb) eingeschaltet und bleiben so lange in Betrieb, wie das Entrauchungssignal ansteht. Danach geht die Anlage wieder in den normalen Automatikbetrieb nach Zeitschaltprogramm.

Die Störungspriorität ist fix "Dringend", eine Entrauchung muss immer quittiert werden.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3901</td>
<td>Entrauchung</td>
<td>Dringende Meldung, Meldung muss quittiert werden</td>
</tr>
</tbody>
</table>

Während des Entrauchungsbetriebs ist die Regelung ausgeschaltet und die Außenluftklappe offen. Die Frostschutzfunktion kann zwar die Pumpe einschalten und die Luftwärmerventile öffnen, doch kann die Anlage nicht ausgeschaltet werden. Ist die Wärme nicht verfügbar, so kann ein Einfrieren der Luftwärmer nicht verhindert werden.
24.5 Störungstaste extern

Der Störungsblock bietet die Möglichkeit eine externe Störungstaste anzuschließen. Die externe Störungstaste hat die gleiche Funktion wie die Störungstaste "I" am Gerät. Beide können parallel betrieben werden.

Der aktuelle Alarmzustand kann über das Störungsrelais extern signalisiert werden.

| Störungstaste extern | ---, N.X1, N.X2, ... (nur digital) |

24.6 Störungsrelais

Um die Störungsmeldungen weiterzuleiten oder um diese z. B. am Schaltschrank mit einem Sicht- oder Hörmelder anzuzeigen, können die zwei Ausgänge des Störungsblocks "Relais1" und "Relais2" auf zwei beliebige freie Ausgänge N.Qx konfiguriert werden.

| Störungsrelais 1 | ---, N.Q1 ... (nur freie Relais) / Zuordnen des Störungsrelais |
| Störungsrelais 2 | ---, N.Q1 ... (nur freie Relais) / Zuordnen des Störungsrelais |

Für jedes der beiden Störungsrelais 1 und 2 können folgende Einstellungen vorgenommen werden:

- **Störungspriorität**: Priorität, bei denen das Relais anziehen soll
- **Signalisierung**: Die folgenden Signalisierungsvarianten können gewählt werden:
 - Störung intern (optisch): Das Störungsrelais meldet nur interne Störungen und bleibt solange aktiv bis keine Störung mehr anliegt.
 - Störung intern (akustisch): Das Störungsrelais meldet nur interne Störungen und bleibt solange aktiv bis die Störung quittiert wird.
 - Störung über Bus (akustisch): Das Störungsrelais meldet geräteinterne Störungen und Bus-Störungen und bleibt solange aktiv, bis die Störung quittiert wird.
- **Invertierung**:
 - Nein bedeutet: Das Relais zieht im Fall einer Störung an
 - Ja bedeutet: Das Relais fällt im Fall einer Störung ab
24.7 Ventilator-Freigaberelais

Das Ventilator-Freigaberelais kann nur für den Grundtyp A und P konfiguriert werden.

Verdrahtungstest

Im Verdrahtungstest können die beiden Störungsrelais direkt geschaltet werden:

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Störungsrelais 1</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Störungsrelais 2</td>
<td>Aus, Ein</td>
</tr>
<tr>
<td>Ventilator-Freigaberelais</td>
<td>---, N.Q1, N.Q2, ... (nur freie Relais) / Zuordnen des Freigaberelais</td>
</tr>
</tbody>
</table>
25 **Wärmebedarf**

Die Funktion Wärmebedarf sammelt Wärmeanforderungen.
Diese Wärmeanforderungen treten intern auf oder kommen von Verbrauchern einer Wärmeverteilzone über den Bus. Die gesammelten Wärmeanforderungen können in eine Zone gesendet werden (nur Grundtyp C) oder als eine resultierende Sollwertvorgabe (Temperatur-Anforderungssignal, Heizungsvorlauf-Sollwert) als stetiges oder digitales Signal weiterverarbeitet werden.

25.1 Aktivieren des Blocks (Grundtyp A, P, U)

Um die Funktion Wärmebedarf zu aktivieren, muss der Funktion die Sequenz zugeordnet werden, auf der der Lufterwärmer oder die Heizfläche konfiguriert ist.

Konfigurationsbeispiel

Sequenz 1 beim Regler 1 regelt die Wärmerückgewinnung
Sequenz 2 des Reglers 1 regelt das Lufterwärmerventil
→ notwendige Einstellung: Regler 1: Sequenz 2

Konfiguration

<table>
<thead>
<tr>
<th>Bedienebene</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regler 1</td>
<td>---, Sequenz 1, Sequenz 2, Sequenz 3</td>
</tr>
<tr>
<td>Regler 2</td>
<td>---, Sequenz 1, Sequenz 2</td>
</tr>
<tr>
<td>Regler 3</td>
<td>---, Sequenz 1, Sequenz 2</td>
</tr>
</tbody>
</table>

Wenn die Kommunikation aktiviert wurde (siehe Kapitel 28 "Kommunikation"), kann der Wärmebedarf über die Kommunikation übertragen werden. Um ein Signal "Wärmebedarf" zu erzeugen, welches von einem anderen Gerät am KNX weiterverarbeitet wird, muss die Wärmeverteilzone eingestellt werden.

Wärmeverteilzone

<table>
<thead>
<tr>
<th>Bedienebene</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeverteilzone</td>
<td>1…31</td>
<td>1</td>
</tr>
</tbody>
</table>

Lastsignal

Der Wärmebedarf wird als Lastsignal (0…100 % Last) über die Kommunikation versendet. Gleichzeitig wird dem Vorregler mitgeteilt, ob Wärme verlangt wird oder nicht. Der Vorregler wird also bedarfsgeführt ein- und ausgeschaltet.

25.2 Aktivieren des Blocks (Grundtyp C)

Im Grundtyp C wird der Wärmebedarfsblock im Zusammenhang mit der Heizen/Kühlen Umschaltung (Kapitel 27) benötigt.
Um den in der Wärmeverteilzone gesammelten Wärmebedarf an einen Wärmeerzeuger zu senden, muss die "Heizen/Kühlen Umschaltung" Funktion aktiviert sein und eine "Wärmeverteilzone erzeug/seitig" eingegeben werden. Der Wärmebedarf kann auch über das Wärmebedarfsrelais oder den Wärmebedarf stetig ausgegeben werden.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Kommunikation > Verteilzonen ></td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Wärmeverteilzone 1…31</td>
</tr>
<tr>
<td>Wärmeverteilzone erzeug/seitig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Kommunikation > Verteilzonen ></td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Wärmebed. Sollwertüberhöhung</td>
</tr>
</tbody>
</table>

Eine Rückmeldung über vorhandene Wärme über die Kommunikation ist nicht möglich.

25.3 Überwachung (Grundtyp A, P, U)

An diesem Eingang kann das Wärme-Rückmeldesignal angeschlossen werden.

<table>
<thead>
<tr>
<th>Konfiguration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Wärmebedarf ></td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Überwachung</td>
</tr>
</tbody>
</table>

Bei einem digitalen Eingang entspricht:

- Ruhestellung = Keine Wärme vorhanden
- Arbeitstellung = Wärme vorhanden

Beim analogen Eingang können nur Eingänge mit °C konfiguriert werden. Es kann ein Grenzwert eingegeben werden. Unter diesem Grenzwert gilt die Wärme als nicht vorhanden.

Liegt nach einer einstellbaren Zeit (Störungsmeldeverzögerung) keine Wärme an, kann eine Störungsmeldung abgesetzt werden. Zusätzlich kann über den Einstellwert "Störungswirkung" gewählt werden, ob die Anlage ausschalten soll oder nicht.

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Einstellungen > ... oder</td>
</tr>
<tr>
<td>Hauptmenü > Einstellungen > Aggregate > Wärmebedarf ></td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Grenzwert</td>
</tr>
<tr>
<td>Störungsmeldeverzögerung</td>
</tr>
<tr>
<td>Störungswirkung</td>
</tr>
</tbody>
</table>

Hinweis

Falls die Anlage bei Störung ausschalten soll, wird auch kein Wärmebedarf mehr weitergemeldet.
Die Einstellungen haben folgende Wirkung:

Funktionsdiagramm

Anlage
- EIN
- AUS

Wärmebedarf
- JA
- NEIN

Wärme vorhanden
- JA
- NEIN

Störungsmeldeverzögerung

Störung
- JA
- NEIN

Störungswirkung
kein Stopp

Ist bei Grundtyp A gleichzeitig mit dem Wärmebedarfsignal die Vorwärmfunktion aktiv, so startet der Ventilator erst, wenn die Vorwärmzeit abgelaufen ist.

Hinweis
Die "Störungsmeldeverzögerung" soll ca. gleich der Zeit "Spülzeit maximal" eingestellt werden. Ist nach der Spülzeit immer noch keine Wärme vorhanden, wird eine Störungsmeldung abgesetzt.

25.4 Wärmebedarfsrelais (Qᵢ)

Zweck und Funktion
An diesen Ausgang kann z. B. eine Freigabe für eine externe Wärmeerzeugung angeschlossen werden. Das Wärmebedarfsrelais spricht an, sobald von den zugeordneten Sequenzen oder von anderen Busteilnehmern in der gleichen Wärmeverteilzone "Wärme" verlangt wird. Es bedeuten:
- Kontakt offen = Kein Wärmebedarf
- Kontakt geschlossen = Wärmebedarf

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Wärmebedarf >
Bedienzeile	Einstellbare Werte / Bemerkung
Wärmebedarfsrelais | ---, N.Q1, N.Q2, ... / Aktivieren des Ausgangs

Hauptmenü > Einstellungen > Aggregate > Wärmebedarf >
Bedienzeile	Bereich	Werkeinstellung
Grenzwert Anforderung Ein | 0...100 % | 10 %
Grenzwert Anforderung Aus | 0...100 % | 5 %
Regelverhalten | Langsam, Mittel, Schnell | Mittel
Auswertung Anforderung | Durchschnitt, Maximal | Maximal
"Grenzwert Anforderung Ein"
Dieser einstellbare Wert verhindert die Einschaltung ganzer Anlagen (z. B. Wärmeerzeugeranlagen) schon bei geringsten Wärmeanforderungen. Die Einschaltung (d. h. Weiterleitung als Bussignal oder Weiterleitung an Ausgänge Q, d, Y, a) erfolgt erst beim Überschreiten dieses eingestellten Wertes "Grenzwert Anforderung Ein".

Regelverhalten
Zur Anpassung an die Anlage kann das Regelverhalten der Vorlauftemperatur auf die Sollwertschiebungen in drei Stufen (Langsam, mittel, schnell) mit folgender Einstellung angepasst werden:

Auswertung Anforderung
Mit der Einstellung "Auswertung Anforderung" kann bestimmt werden, ob der Maximalwert oder der Durchschnitt der Anforderungen genommen werden soll.

- Mit der Einstellung Maximal wird die Vorlauftemperatur so korrigiert, dass die Ventilstellung des Verbrauchers mit dem grössten Bedarf 90 % beträgt
- Mit der Einstellung Durchschnitt wird die Vorlauftemperatur so korrigiert, dass die Ventilstellung der vier grössten Verbraucher im Durchschnitt 90 % beträgt.

Hinweis: Mit dieser Einstellung kann nicht sichergestellt werden, dass alle Verbraucher ihren Wärmebedarf decken können. Sie verhindert aber, dass ein einzelner Verbraucher die Vorlauftemperatur auf einen hohen Wert zwingt (z. B. wegen eines offenen Fensters)

25.4.1 Wärmebedarf intern
Das Signal "Wärmebedarfssrelais" steht auch als internes Signal am Ausgang (d) zur Verfügung. Der Bedarf kann als digitaler Wert z. B. über einen Logikblock, etc. weiter verarbeitet werden, z. B. zum Einschalten einer Pumpe, wenn eine Wärmeanforderung gesendet wurde.
25.5 Wärmebedarf stetig (\(\nu\))

Zweck
Zusätzlich zum Wärmebedarfsschutz kann der Wärmebedarf an einem stetigen Ausgang an anderen Geräten zur Verfügung gestellt werden. Die Kennlinie zur Ausgabe des stetigen 0…10 V Signals ist einstellbar.

Konfiguration

Einstellwerte

Erklärungen zu den Einstellwerten

Diagramm zu den Einstellwerten
Das Ausgangssignal Y (DC 0…10 V) für den Wärmebedarf soll einem Vorlauf-Sollwertbereich TV von 0…120 °C entsprechen. Der Grenzwert soll bei 10 °C liegen.
25.6 Anzeigewerte

Die Wärme- und Kältebedarfe sind in der Passwortebene sichtbar unter:

Hauptmenü > Aggregate > Wärme- und Kältebedarf >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmebedarf Luftaufbereitung</td>
<td>0...100 %</td>
<td>von RMU(A,U), RMS</td>
</tr>
<tr>
<td>Wärmebedarf Luftnachbehandlung</td>
<td>0...100 %</td>
<td>von RXB</td>
</tr>
<tr>
<td>Wärmebedarf Heizfläche</td>
<td>0...100 %</td>
<td>von RXB</td>
</tr>
<tr>
<td>Wärmebedarf Luftaufbereitung</td>
<td>-50...250°C</td>
<td>von RMU (C), RMH</td>
</tr>
<tr>
<td>Wärmebedarfsrelais</td>
<td>Ein, Aus</td>
<td>Ausgang Q</td>
</tr>
<tr>
<td>Wärmebedarf stetig</td>
<td>0...100 %</td>
<td>Ausgang Y</td>
</tr>
</tbody>
</table>

In der Serviceebene sind sichtbar:

Hauptmenü > Aggregate > Wärme- und Kältebedarf >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmebedarfsrelais</td>
<td>Ein, Aus</td>
<td>Ausgang Q</td>
</tr>
<tr>
<td>Wärmebedarf stetig</td>
<td>0...100 %</td>
<td>Ausgang Y</td>
</tr>
</tbody>
</table>

25.7 Funktionskontrolle / Verdrahtungstest

Im Verdrahtungstest kann man die Ausgänge zur Funktionskontrolle direkt schalten.

Hauptmenü > Inbetriebnahme > Verdrahtungstest > Ausgänge >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmebedarfsrelais</td>
<td>---, 0...100 % (das Relais schaltet >= 1 %)</td>
</tr>
<tr>
<td>Wärmebedarf stetig</td>
<td>---, 0...100 %</td>
</tr>
</tbody>
</table>

25.8 Fehlerbehandlung

Der Temperaturfühler der Überwachung (Kapitel 25.3 "Überwachung (Grundtyp A, P, U)"

wird seinerseits überwacht:

Wenn das Menü "Inbetriebnahme" verlassen wird, wird überprüft, ob der Fühler angeschlossen ist. Ist zu diesem Zeitpunkt kein Fühler angeschlossen, so wird keine Überwachung durchgeführt.

Ist der Fühler zu diesem Zeitpunkt angeschlossen und fehlt er später, wird eine Störmeldung abgesetzt (siehe Kapitel 0 "Analoge Eingänge"). Der Fehlerfehler wird als "Keine Wärme vorhanden" interpretiert.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3201</td>
<td>Keine Wärme vorhanden</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden oder * Dringende Meldung mit Anlagenstopp; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>101</td>
<td>[N.X1] Fühlerfehler, ..</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

* Die Wirkung ist abhängig von der Einstellung "Störungswirkung" (Kapitel 25.3)

Hinweis

Digitale Signale können nicht überwacht werden.
26 Kältebedarf

Die Funktion Kältebedarf sammelt Kälteanforderungen. Diese Kälteanforderungen treten intern auf oder kommen von Verbrauchern einer Kälteverteilzone über den Bus. Die gesammelten Kälteanforderungen können in eine weitere Zone gesendet werden (nur Grundtyp C) oder als eine resultierende Sollwertvorgabe (Temperaturanforderungssignal, Kaltwasservorlauf-Sollwert) als stetiges oder digitales Signal weiterverarbeitet werden.

26.1 Aktivieren des Blocks (Grundtyp A, P, U)

Um die Funktion Kältebedarf zu aktivieren, muss der Funktion die Sequenz zugeordnet werden, auf der der Luftkühler oder die Kühlfläche konfiguriert sind. Jedem Regler kann eine Sequenz zugeordnet werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Kältebedarf >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regler 1</td>
<td>---, Sequenz 4, Sequenz 5</td>
</tr>
<tr>
<td>Regler 2</td>
<td>---, Sequenz 4</td>
</tr>
<tr>
<td>Regler 3</td>
<td>---, Sequenz 4</td>
</tr>
</tbody>
</table>

Wenn die Kommunikation aktiviert wurde (siehe Kapitel 28 "Kommunikation"), kann der Kältebedarf über die Kommunikation übertragen werden. Um ein Signal "Kältebedarf" zu erzeugen, welches von einem anderen Gerät am KNX weiterverarbeitet wird, muss die Kälteverteilzone eingestellt werden.

Hauptmenü > Inbetriebnahme > Kommunikation > Verteilzonen >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kälteverteilzone</td>
<td>1…31</td>
<td>1</td>
</tr>
</tbody>
</table>

Lastsignal

Der Kältebedarf wird als Lastsignal (0…100 % Last) über die Kommunikation versendet. Gleichzeitig wird dem Vorregler mitgeteilt, ob Kälte verlangt wird oder nicht. Der Vorregler wird also bedarfsgeführt ein- und ausgeschaltet.
26.2 Aktivieren des Blocks (Grundtyp C)

Der Kältebedarfsblock ist im Grundtyp C immer aktiv, die Kältebedarfssignale werden immer empfangen. Um den in der Kälteverteilzone gesammelten Kältebedarf an einen Kälteerzeuger zu senden, muss eine "Kälteverteilzone erzeugerseitig" eingegeben werden. Der Kältebedarf kann auch über das Kältebedarfsrelais oder den Kältebedarf stetig ausgegeben werden.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kälteverteilzone</td>
<td>1…31</td>
<td>1</td>
</tr>
<tr>
<td>Kälteverteilzone erzeugerseitig</td>
<td>----, 1…31</td>
<td>----</td>
</tr>
</tbody>
</table>

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kältebedarf Sollwertreduktion</td>
<td>0…50 K</td>
<td>0 K</td>
</tr>
</tbody>
</table>

Eine Rückmeldung über vorhandene Kälte über die Kommunikation ist nicht möglich.
26.3 Überwachung

Konfiguration

- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Kältebedarf >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überwachung</td>
<td>---, N.X1, N.X2, ... / Aktivieren der Funktion “Überwachung”</td>
</tr>
</tbody>
</table>

An diesem Eingang kann die Rückmeldung der Kälteerzeugung angeschlossen werden.

Die Rückmeldung kann über einen digitalen Eingang (z. B. Motorschutzschalter "Kältemaschine") oder über einen analogen Eingang (z. B. LG-Ni1000-Fühler im Wasservorlauf, der bei Temperaturen < 10 °C Kälte meldet) erfolgen.

Bei einem digitalen Eingang entspricht:
- Ruhestellung = Keine Kälte vorhanden
- Arbeitsstellung = Kälte vorhanden

Beim analogen Eingang können nur Eingänge mit °C konfiguriert werden. Es kann ein Grenzwert eingegeben werden. Über diesem Grenzwert gilt die Kälte als nicht vorhanden.

Liegt nach einer einstellbaren Zeit (Störungsmeldeverzögerung) keine Kälte an, kann eine Störungsmeldung abgesetzt werden. Zusätzlich kann über den Einstellwert "Störungswirkung" gewählt werden, ob die Anlage ausschalten soll oder nicht.

Einstellwerte

- Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Kältebedarf >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grenzwert</td>
<td>0...50 °C</td>
<td>15 °C</td>
</tr>
<tr>
<td>Störungsmelde-verzögerung</td>
<td>00.00...59.55 m:s</td>
<td>30.00 m:s</td>
</tr>
<tr>
<td>Störungswirkung</td>
<td>Kein Stopp, Stopp</td>
<td>Kein Stopp</td>
</tr>
</tbody>
</table>

Hinweis

Falls die Anlage bei Störung ausschalten soll, wird auch kein Kältebedarf mehr weiter gemeldet.

Anwendungsbeispiel

Kältemaschinenüberwachung über Thermopaket.

Die Anlage wird ausgeschaltet, wenn gekühlt werden soll und die Kältemaschine gestört ist.
26.4 Kältebedarfsrelais (Qᵢ)

Zweck und Funktion
An diesen Ausgang kann z. B. eine Freigabe für eine externe Kälteerzeugung angeschlossen werden.
Das Kältebedarfsrelais spricht an, sobald vom Bus "Kälte" verlangt wird.
Es bedeutet:
- Kontakt offen = Kein Kältebedarf
- Kontakt geschlossen = Kältebedarf

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Kältebedarf >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Einstellbare Werte / Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kältebedarfsrelais</td>
<td>---, N.Q1, N.Q3, ... / Aktivieren des Ausgangs</td>
</tr>
</tbody>
</table>

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
Hauptmenü > Einstellungen > Aggregate > Kältebedarf >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grenzwert Anforderung Ein</td>
<td>0...100 %</td>
<td>10 %</td>
</tr>
<tr>
<td>Grenzwert Anforderung Aus</td>
<td>0...100 %</td>
<td>5 %</td>
</tr>
<tr>
<td>Regelverhalten</td>
<td>Langsam, Mittel, Schnell</td>
<td>Mittel</td>
</tr>
<tr>
<td>Auswertung Anforderung</td>
<td>Durchschnitt, Maximal</td>
<td>Maximal</td>
</tr>
</tbody>
</table>

"Grenzwert Anforderung Ein"
Dieser einstellbare Wert verhindert die Einschaltung ganzer Anlagen (z.B. Kälteanlagen) schon bei geringsten Kälteanforderungen. Die Einschaltung (d.h. Weiterleitung als Bussignal, oder an Ausgängen Q, d, Y, a) erfolgt erst beim Überschreiten dieses eingestellten Wertes "Grenzwert Anforderung Ein".

Regelverhalten
Zur Anpassung an die Anlage kann das Regelverhalten der Vorlauftemperatur auf die Sollwertschiebungen mit folgender Einstellung in drei Stufen (Langsam, schnell, mittel) angepasst werden.

Auswertung Anforderung
Mit der Einstellung "Auswertung Anforderung" kann bestimmt werden, ob der Maximalwert oder der Durchschnitt der Anforderungen genommen werden soll:
- Mit der Einstellung Maximal wird die Vorlauftemperatur so korrigiert, dass die Ventilstellung des Verbrauchers mit dem grössten Bedarf 90 % beträgt.
- Mit der Einstellung Durchschnitt wird die Vorlauftemperatur so korrigiert, dass die Ventilstellung der vier grössten Verbraucher im Durchschnitt 90 % beträgt.

Hinweis: Mit dieser Einstellung kann nicht sichergestellt werden, dass alle Verbraucher ihren Kältebedarf decken können. Sie verhindert aber, dass ein einzelner Verbraucher die Vorlauftemperatur auf einen tiefen Wert zwingt (z. B. wegen eines offenen Fensters).
26.4.1 Kältebedarf intern

Zweck und Funktion
Das berechnete Anforderungssignal steht als internes Signal zur Verfügung. Dazu gibt es am Funktionsblock "Kältebedarf" den Ausgang (Ⅽ d)
Der Bedarf kann als digitaler Wert z. B. über einen Logikblock, etc. weiter verarbeitet werden, z. B. zum Einschalten einer Pumpe, wenn eine Kälteanforderung gesendet wurde.

26.5 Kältebedarf stetig (Ⅽ)

Zweck
Zusätzlich zum Kältebedarfsrelais kann der Kältebedarf an einem stetigen Ausgang für andere Geräte zur Verfügung gestellt werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Aggregate > Kältebedarf >

Bedienzeile	Einstellbare Werte / Bemerkung
Kältebedarf stetig | ---, N.Y1, N.Y2 / Aktivieren des Ausgangs

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > oder
Hauptmenü > Einstellungen > Aggregate > Kältebedarf >

Bedienzeile	Bereich	Werkeinstellung
Sollwert bei 0 Volt | Sollwert bei 10 V …250 °C | 12 °C
Sollwert bei 10 Volt | –50 °C…Sollwert bei 0 V | 6 °C
Grenzwert | Sollwert bei 10 V…Sollwert bei 0 V | 12 °C

Erklärungen zu den Einstellwerten
"Sollwert bei 0 Volt" legt den Vorlauftemperatur-Sollwert bei DC 0 V fest
"Sollwert bei 10 Volt" legt den Vorlauftemperatur-Sollwert bei DC 10 V fest.
Grenzwert bedeutet Grenzwert für Kältebedarf: Temperaturen über diesem Wert werden als kein Kältebedarf interpretiert.
Solange der Vorlauftemperatur-Sollwert den eingestellten Grenzwert nicht unterschritten hat, wird das Ausgangssignal DC 0 V ausgegeben. Wenn der Grenzwert unterschritten wird, dann wird das entsprechende Ausgangssignal solange ausgegeben, bis der Sollwert wieder den Grenzwert plus einer Hysterese von 0,5 K überschritten hat.

Diagramm zu den Einstellwerten
Das Ausgangssignal Y (DC 0…10 V) für den Kältebedarf soll einem Vorlauf-Sollwertbereich TV von 6…13 °C entsprechen. Der Grenzwert soll bei 12 °C liegen.

Legende:
1) Sollwert in °C bei DC 0 V
2) Sollwert in °C bei DC 10 V
3) Grenzwert

WTV: Aktueller Vorlauftemperatur Sollwert
26.6 Anzeigewerte

Die Wärme- und Kältebedarfe sind in der Passwortebene sichtbar unter:

- Hauptmenü > Aggregate > Wärme- und Kältebedarf >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kältebedarf Luftaufbereitung</td>
<td>0...100 %</td>
<td>von RMU (A,U), RMS</td>
</tr>
<tr>
<td>Kältebedarf Luftnachbehandlung</td>
<td>0...100 %</td>
<td>von RXB</td>
</tr>
<tr>
<td>Kältebedarf Kühlfläche</td>
<td>0...100 %</td>
<td>von RXB</td>
</tr>
<tr>
<td>Kältebedarf</td>
<td>-50…250°C</td>
<td>von RMU (C)</td>
</tr>
<tr>
<td>Kältebedarfsrelais</td>
<td>Ein, Aus</td>
<td>Ausgang Q</td>
</tr>
<tr>
<td>Kältebedarf stetig</td>
<td>0…100 %</td>
<td>Ausgang Y</td>
</tr>
</tbody>
</table>

In der Serviceebene sind sichtbar:

- Hauptmenü > Aggregate > Wärme- und Kältebedarf >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kältebedarfsrelais</td>
<td>Ein, Aus</td>
<td>Ausgang Q</td>
</tr>
<tr>
<td>Kältebedarf stetig</td>
<td>0…100 %</td>
<td>Ausgang Y</td>
</tr>
</tbody>
</table>

26.7 Funktionskontrolle / Verdrahtungstest

Zweck

Während des Verdrahtungstests der Ausgänge kann der Kältebedarf zur Funktionskontrolle über den Steuerschalter direkt geschaltet werden.

Einstellwerte

- Hauptmenü > Inbetriebnahme > Verdrahtungstest > Ausgänge >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kältebedarfsrelais</td>
<td>---, 0…100 % (das Relais schaltet >= 1 %)</td>
</tr>
<tr>
<td>Kältebedarf stetig</td>
<td>---, 0…100 %</td>
</tr>
</tbody>
</table>

26.8 Fehlerbehandlung

Der Temperaturfühler wird folgendermassen überwacht:

Wenn das Menü Inbetriebnahme verlassen wird, wird überprüft, ob der Fühler angeschlossen ist. Ist zu diesem Zeitpunkt kein Fühler angeschlossen, so wird keine Überwachung durchgeführt.

Ist der Fühler zu diesem Zeitpunkt angeschlossen und fehlt er später, wird eine Störmeldung abgesetzt (siehe Kapitel 0 "Analoge Eingänge"). Der Fühlerfehler wird als "Keine Kälte vorhanden" interpretiert.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3202</td>
<td>Keine Kälte vorhanden</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden oder Dringende Meldung mit Anlagenstopp; muss quittiert und entriegelt werden</td>
</tr>
<tr>
<td>101</td>
<td>[N.X1] Fühlerfehler,</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

* Die Wirkung ist abhängig von der Einstellung “Störungswirkung" (Kapitel 26.3)

Hinweis

Digitale Signale können nicht überwacht werden.

261/328
27 Heizen/Kühlen Umschaltung

Anwendung

Der Funktionsblock Heizen/Kühlen Umschaltung wird zur Umschaltung (Changeover) der Betriebsart (Heizen oder Kühlen) in 2-Rohr-Systemen eingesetzt.

Die Vorgabe Heizen/Kühlen kann am Gerät selber erzeugt oder als Signal Heizen/Kühlen vom Bus empfangen werden.

Es stehen folgende Arten der Umschaltung der Betriebsartvorgabe H/K zur Verfügung:
- Umschaltung mit Betriebswahlschalter an der Bedienung
- Umschaltung mit analogen Eingang (z. B. für Umschaltung nach Aussentemperatur oder nach Vorlauftemperatur)
- Umschaltung mit digitalem Eingang (z. B. für Umschaltung mit Handschalter oder mit Changeover Thermostat im Vorlauf)
- Umschaltung nach Datum

Sind mehrere Umschaltarten aktiviert, so wird die Betriebsart nach folgender Priorität bestimmt:
1. Betriebswahlschalter
2. H/K Umschalteingang
3. Heizen/Kühlen nach Kalender

Die Betriebsartvorgabe Heizen/Kühlen wird in der Wärmeverteilzone und Kälteverteilzone allen anderen Reglern in der gleichen Zone zur Verfügung gestellt.

In einem hydraulischen Kreis darf die Betriebsartvorgabe Heizen/Kühlen nur an einer Stelle erfolgen. Werden mehrere Umschaltsignale in der gleichen Verteilzone auf den Bus gesendet, so wird eine Störungsmeldung erzeugt.

Die Betriebsartvorgabe H/K soll möglichst beim Vorregler oder Erzeuger aktiviert werden.

Empfehlung

Die Betriebsartvorgabe H/K soll möglichst beim Vorregler oder Erzeuger aktiviert werden.

27.1 Aktivieren der Funktion

Um die Funktion zu aktivieren muss in der Bedienzeile "2-Rohr-System Heizen/Kühlen" Ja gesetzt werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Heizen/Kühlen Umschal'tg >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Rohr-System Heizen/Kühlen</td>
<td>Nein, Ja</td>
<td>Nein</td>
</tr>
</tbody>
</table>
27.2 Betriebsartvorgabe Heizen/Kühlen

27.2.1 Umschaltung mit Betriebswahlschalter

<table>
<thead>
<tr>
<th>Konfiguration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Heizen/Kühlen Umschalt’g ></td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Betriebsschalter</td>
</tr>
</tbody>
</table>

Das H/K Umschaltsignal kann über die Bedienzeile "Vorgabe" direkt vorgegeben werden. Der aktuelle Zustand wird in der Bedienzeile "2-Rohr-System Heizen/Kühlen" angezeigt.

<table>
<thead>
<tr>
<th>Konfiguration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Heizen/Kühlen Umschalt’g ></td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Vorgabe</td>
</tr>
<tr>
<td>2-Rohr-System Heizen/Kühlen</td>
</tr>
</tbody>
</table>

Es bedeuten:
Auto: Automatikbetrieb nach H/K Umschalteingang oder Heizen/Kühlen nach Datum
Heizen: Fixe Vorgabe auf Heizen
Kühlen: Fixe Vorgabe auf Kühlen

27.2.2 Umschaltung nach Kalender

<table>
<thead>
<tr>
<th>Konfiguration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Heizen/Kühlen Umschalt’g ></td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Heizen/Kühlen nach Kalender</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Einstellungen > Heizen/Kühlen Umschalt’g ></td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>Startdatum Heizen</td>
</tr>
<tr>
<td>Startdatum Kühlen</td>
</tr>
</tbody>
</table>

27.2.3 Umschaltung mit analogem oder digitalem Eingang

<table>
<thead>
<tr>
<th>Konfiguration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Heizen/Kühlen Umschalt’g ></td>
</tr>
<tr>
<td>Bedienzeile</td>
</tr>
<tr>
<td>H/K Umschalteingang</td>
</tr>
</tbody>
</table>

Wird für die Erzeugung des Umschaltsignals ein analoges Eingangssignal verwendet, so müssen für die Umschaltung zwei Grenzwerte gewählt.

Einstellwerte

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizen Ein / Kühlen Aus</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Heizen Aus / Kühlen Ein</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Dämpfung</td>
<td>0...100 h</td>
<td>0 h</td>
</tr>
</tbody>
</table>

* je nach Einheit
** einheitenvariabel

Hinweis

Wird ein digitaler Eingang zur Umschaltung verwendet, so muss die Bedienzeile "Heizen Ein / Kühlen Aus" = 1 und " Heizen Aus / Kühlen Ein" = 0 eingestellt sein (entspricht der Werkeinstellung).

Konfigurationsfehler

Ist gleichzeitig die Umschaltung nach Datum und nach digitalen Eingang konfiguriert, so arbeitet der Regler mit der Umschaltung nach digitalem Eingang.
27.3 Wirkung der Funktion Heizen/Kühlen

Die Wirkung der Betriebsvorgabe Heizen/Kühlen ist unabhängig von der Art der Umschaltung und ob die Umschaltung lokal erfolgte oder ob das Signal über den Bus übermittelt wurde.

27.3.1 Sperren von Sequenzen am Sequenzregler

In der Betriebsart "Heizen" wird die Sequenz gesperrt, die dem Funktionsblock "Kältebedarf" zugeordnet ist.
In der Betriebsart "Kühlen" wird die Sequenz gesperrt, die dem Funktionsblock "Wärmebedarf" zugeordnet ist.

27.3.2 Wärmebedarf / Kältebedarf

In der Betriebsart "Heizen" wird das Kältebedarfsrelais gesperrt, der Kältebedarf stetig auf 0 % gesetzt und es wird kein Kältebedarfssignal auf den Bus gesendet.
In der Betriebsart "Kühlen" wird das Wärmebedarfsrelais gesperrt, der Wärmebedarf stetig auf 0 % gesetzt und es wird kein Wärmebedarfssignal auf den Bus gesendet.

27.3.3 Sperrzeit

Um zu verhindern, dass die Kältemaschine sofort einschaltet, nachdem die Wärmeerzeugung ausgeschaltet hat, kann eine Sperrzeit eingestellt werden. Während der Sperrzeit ist die Regelung gesperrt, darum wird kein Wärme- bzw. Kältebedarf erzeugt und weitergegeben.

Eine zu hohe Eintrittstemperatur bei der Kältemaschine kann zu einem Schaden an der Kältemaschine führen.

Einstellwerte

Hauptmenü > Inbetriebnahme > Einstellungen > Heizen/Kühlen Umschalt'g >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperrzeit</td>
<td>00.00...23.50 h.m</td>
<td>00.30 h.m</td>
</tr>
</tbody>
</table>

Die Sperrzeit wirkt auch nach einem Spannungsausfall bedingten Ausschalten des Gerätes und beim Verlassen des Inbetriebnahmemenüs.

27.4 Anzeige des aktuellen Zustands

Der aktuelle Zustand wird im Menü "Heizen/Kühlen Umschalt'g" dargestellt:

Hauptmenü > Heizen/Kühlen Umschalt'g >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Rohr-System Heizen/Kühlen</td>
<td>Heizen / Kühlen</td>
</tr>
</tbody>
</table>
27.5 Heizen/Kühlen Umschaltrelais

Soll das Heizen/Kühlen-Signal nicht nur auf den Bus gesendet, sondern auch auf einem Relaisausgang zur Verfügung stehen, um z. B. ein Ventil zu schalten oder an ein nicht kommunikatives Gerät weitergeleitet zu werden, so kann das H/K Umschaltrelais konfiguriert werden.

Konfiguration

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Heizen/Kühlen Umschalt'g >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizen/Kühlen Umschaltrelais</td>
<td>---, N.Q1, N.Q2,.../</td>
<td>---</td>
</tr>
</tbody>
</table>

Der aktuelle Zustand des Umschaltrelais ist abrufbar:

Hauptmenü > Heizen/Kühlen Umschalt'g >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Aktueller Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizen/Kühlen Umschaltrelais</td>
<td>"Aus": Kühlen / "Ein": Heizen</td>
</tr>
</tbody>
</table>

Im Verdrahtungstest kann das H/K Umschaltrelais direkt geschaltet werden.

Verdrahtungstest

Hauptmenü > Inbetriebnahme > Verdrahtungstest > Ausgänge >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizen/Kühlen Umschaltrelais</td>
<td>"Aus": Kühlen / "Ein": Heizen</td>
</tr>
</tbody>
</table>

27.6 Fehlerbehandlung

Verhalten

Wenn in einem 2-Rohr-System das Umschaltsignal "Heizen/Kühlen" am Bus fehlt, dann verwendet der Regler weiterhin den letzten empfangenen Wert. War nie ein Signal vorhanden, so wird als Defaultwert "Heizen" verwendet.

Störungsmeldung

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5801</td>
<td>H/K Umschaltsignalausfall</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

Verhalten

Wenn in einem 2-Rohr-System ein H/K-Umschalteingang, Heizen/Kühlen nach Datum oder Betriebswahl Schalter konfiguriert ist und in einer der Zonen ein Umschaltsignal von einem anderen Gerät auf dem Busempfangen wird, dann wird die Störungsmeldung "> 1 H/K Umschaltsignalausfall" abgesetzt.

Störungsmeldung

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5802</td>
<td>>1 Heizen/Kühlen Umschaltsignal</td>
<td>Nicht dringende Meldung; muss quittiert werden</td>
</tr>
</tbody>
</table>
27.7 Anwendungsbeispiele

27.7.1 Lüftung mit Luftwärmer/-kühler (2-Rohr-System)

H/K-Prinzip
Weiterleiten des H/K Umschaltsignals an andere Verbraucherregler in der gleichen Wärme- und Kälteverteilzone.

Anwendung
Die Wärmeerzeugung und Kältezeugung wird nicht mit einem Synco Regler geregelt. Es steht lediglich das Wasser zum Heizen oder Kühlen zur Verfügung.

Schema und Konfiguration
Grundtyp A oder P

Mit:
X1: Vorlauf-Temperaturfühler
Y1: Ventil

Typische Einstellungen
Heizen EIN 30°C, Kühlen EIN 19°C

Konfigurationsvariante
Eine Variante zum Beispiel ist die Verwendung eines digitalen Eingangs (DIG) statt des Vorlauf-Temperaturfühlers. Typische Einstellungen sind dann:
Heizen Ein / Kühlen Aus = 1
Heizen Aus / Kühlen Ein = 0

27.7.2 Lüftung mit Wärmebedarf-/Kältebedarfsrelais

H/K-Prinzip
Die Umschaltung Heizen Kühlen erfolgt nach gedämpfter Aussentemperatur.

Anwendung

Schema und Konfiguration
Grundtyp A oder P
Typische Einstellungen

Heizen EIN 16°C, Kühlen EIN 24°C, Dämpfung 24h, Sperrzeit 4h (Sperrung Relais Q2 und Q3 nach Umschaltung).

27.7.3 Vorregler für 2-Rohr-System Heizen/Kühlen

H/K-Prinzip

Die Umschaltung Heizen/Kühlen erfolgt (z. B.) nach Datum.

Anwendung

Die Vorregelung, die Weiterleitung der Bedarfssignale Heizen und Kühlen (Bedarfsrelais, Bedarf stetig oder Bedarfssignal KNX) sowie die Ansteuerung des Umschaltventils kann mit dem RMU7..B gelöst werden. Die Anlage regelt auf die Wärme- und Kältebedarfssignale von angeschlossenen Verbraucherreglern. Das H/K-Umschaltsignal wird an diese Verbraucherregler weitergeleitet.

Schema und Konfiguration

Grundtyp C
Typische Einstellungen

<table>
<thead>
<tr>
<th>Eingabe</th>
<th>Tag - Monat</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizbeginn</td>
<td>01.10.****</td>
<td></td>
</tr>
<tr>
<td>Kühlbeginn</td>
<td>01.05.****</td>
<td></td>
</tr>
</tbody>
</table>

Hinweis

Eine detaillierte Beschreibung der KNX Signalverläufe bei den verschiedenen H/K Varianten findet sich in der "KNX Dokumentation" (P3127, Kapitel 9).
28 Kommunikation

Eine detaillierte Beschreibung der Kommunikation ist in der Basisdokumentation "Kommunikation über KNX-Bus" (Bestellnummer: CE1P3127de) zu finden. Im nachfolgenden Kapitel sind lediglich die wichtigsten Einstellungen beschrieben, um eine einfache Anlage in Betrieb zu nehmen.

28.1 Aktivieren der Kommunikation

Die Kommunikation ist aktiviert, wenn
- die Geräteadresse eingegeben ist (jeder Busteilnehmer benötigt eine individuelle Geräteadresse)
- die Busspeisung vorhanden ist und
- das Busgerät nicht im Inbetriebnahme-Mode ist

Wenn die Kommunikation aktiviert wurde hat dies folgende Wirkung:
- Datenaustausch der für die Heizungs- und Lüftungstechnik relevanten Daten (z. B. Wärme- Kältebedarf, Sollwerte etc.), wenn die entsprechenden Zoneneinstellungen gesetzt sind
- Fernbedienung der Geräte kann über den KNX-Bus durch eine Bedienstation oder Zentrale erfolgen
- Störungsmeldungen werden immer über den KNX-Bus gesendet und können von anderen Synco-Geräten weiter verarbeitet werden
- Störungsmeldungen anderer Synco-Geräte werden im Display angezeigt unter: "Hauptmenü > Störungen > Störungsmeldung Bus"
- Störungsmeldungen anderer Synco-Geräte können auf ein Störungsrelais gegeben werden (siehe Kapitel 24.6 "Störungsrelais")

28.2 Menü "Kommunikation"

28.2.1 Untermenü "Grundeinstellungen"

Bedienzeile "Geräteadresse"

<table>
<thead>
<tr>
<th>Einstellwerte</th>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geräteadresse</td>
<td>1...253 (1...255)</td>
<td>255</td>
<td></td>
</tr>
</tbody>
</table>

Wenn zwei Geräte am KNX die gleiche Geräteadresse eingestellt haben, wird eine Fehlermeldung ">1 gleiche Geräteadresse" ausgelöst.

Wenn zwei Synco RMU... Grundtyp A oder U die gleiche "Geografische Zone (Apartm.)" eingestellt haben, wird eine Fehlermeldung ">1 gleiche geogr. Zone [1] " ausgelöst.

Störungsmeldungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6001</td>
<td>>1 gleiche Geräteadresse</td>
<td>Dringende Meldung; muss quittiert werden</td>
</tr>
<tr>
<td>5402</td>
<td>>1 gleiche geogr. Zone [1]</td>
<td>Nicht dringende Meldung; muss quittiert werden</td>
</tr>
</tbody>
</table>
3.1.2 Untermenü "Bedienzeile aktuell" (Grundtyp A, P und C)

In einer Geografischen Zone werden Gebäude oder Gebäudeteile aus betriebstechnischer Sicht zusammengefasst, die folgenden Kriterien unterliegen:
- gleiche Raum-Betriebsart
- gleiche Raumtemperatur (Sollwert, Istwert)

Störung-Fernentriegelung = "Ja" bedeutet, dass alle Störungsmeldungen mit Selbsthaltung auch über den KNX-Bus, z. B. von der Bedienung RMZ792, Bedienstation via OCI700.1 oder einer Zentrale OZW775 entriegelt werden dürfen. Ist diese Bedienzeile auf "Nein" eingestellt, so hat die Entriegelung der Selbsthaltung lokal am Gerät über die Störungsquittiertaste zu erfolgen.

28.2.2 Untermenü "Raum" (Grundtyp A, P und C)

In einer Geografischen Zone werden Gebäude oder Gebäudeteile aus betriebstechnischer Sicht zusammengefasst, die folgenden Kriterien unterliegen:
- gleiche Raum-Betriebsart
- gleiche Raumtemperatur (Sollwert, Istwert)

Raummodellvarianten

Die nachfolgend beschriebenen Varianten sollen helfen, die richtige Einstellung (passend zur Gebäudesituation) der Bedienzeilen "Geografische Zone (Apartm.)" und "Schaltuhr-Slave (Apartment)" zu ermitteln.

Variante 1: Regler arbeiten autonom

Die Grundvariante 1 geht davon aus, dass eine Lüftungsanlage unabhängig von anderen Anlagen (Heizkreise, etc.) ihre eigene individuelle Raumbetriebsart hat. Für diese Anwendung ist keine Geografische Zone einzustellen; "Geografische Zone (Apartm.)" kann auf "----" belassen werden.

Variante 2: Erweiterung von 1 (mit Raumgerät)

Variante 3: Regler haben gemeinsames Ferien / Sondertagsprogramm

Es wird ein Kalender für die gemeinsamen Ferien- und Sondertage definiert. Die Belegungszeiten (Schaltuhren) der verschiedenen geografischen Zonen sind individuell; es gelten aber für alle (oder einzelne) Zonen dieselben Ferien- und Sondertage.

Variante 4: Regler haben gleiche Raumbelegungszeiten

Sind die Raumbelegungszeiten der verschiedenen Geografischen Zonen identisch, besteht die Möglichkeit, eine Schaltuhr als Master zu definieren. Die anderen Regler übernehmen als Schaltuhr-Slave die Belegungszeiten des Masters.
Für die detaillierte Beschreibung des Schaltuhrbetriebs siehe Kapitel 6.

Variante 5: Regler haben gemeinsame Raumbetriebsart

Versorgen zwei Lüftungsanlagen oder ein Heizkreis und eine Lüftungsanlage die gleichen Räume, haben diese auch die gleiche Geografische Zone. Die beiden Anlagen erfassen dieselbe Raumtemperatur und berücksichtigen die gleiche Raumbelegung (d. h. es wirkt die gleiche Raumbetriebsart).

Wird die Raumbetriebsart durch die Präsenztaste am Raumgerät (z. B. am QAW740) geändert, übernimmt der Raumregelungs-Master diese Änderung und teilt diese dem Raumregelungs-Slave mit.

Bei einer Raumregelungskombination Heizkreis/Lüftungsanlage übernimmt immer die Lüftungsanlage die Funktion des Raumregelungsmasters.
Liegt eine Raumregelungskombination vor, kann zusätzlich zur Raumbetriebsart auch der Sollwert an den Slave übermittelt werden.

Grafische Zusammenfassung der Varianten:

<table>
<thead>
<tr>
<th>Ferien / Sondertage</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltuhr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raumbetriebs-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wahlselector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raumgerät</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digitale Eingänge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sollwerte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anlage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variante 1:

- Gerät 1: 1
- Gerät 2: 1

Variante 3:

- Gerät 1: Master
- Gerät 2: Slave

Variante 4:

- Gerät 1: Master
- Gerät 2: Slave

Variante 5:

- Gerät 1: Master
- Gerät 2: Slave

Variante 6:

- Gerät 1: Master
- Gerät 2: Slave

28.2.3 Untermenü "Schaltuhr 2"

Ist das Gerät über die Kommunikation mit anderen Reglern verbunden, so kann die Schaltuhr 2 anstelle eines autonomen Betriebes auch als Slave betrieben werden, (d. h. sie empfängt die Schaltuhr vom Bus).

Hauptmenü > Inbetriebnahme > Kommunikation > Schaltuhr 2 >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltuhr-Slave (Apartment)</td>
<td>----, 1..126</td>
<td>----</td>
</tr>
<tr>
<td>Umsetzung Prekomfort</td>
<td>Aus, Ein</td>
<td>Ein</td>
</tr>
</tbody>
</table>

Für die detaillierte Beschreibung der Bedienzeilen siehe Kapitel 7 "Schaltuhr 2 (Ein/Aus)".

28.2.4 Untermenü "Ferien / Sondertage"

Ist der Regler über die Kommunikation mit anderen Reglern verbunden, so kann das gleiche Ferien/Sondertagsprogramm auf verschiedene Regler verteilt werden.

Hauptmenü > Inbetriebnahme > Kommunikation > Ferien / Sondertage >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferien/Sondertage-Betrieb</td>
<td>Autonom, Slave, Master</td>
<td>Autonom</td>
</tr>
<tr>
<td>Ferien/Sondertage-Zone</td>
<td>1...31</td>
<td>1</td>
</tr>
</tbody>
</table>

Für die Beschreibung der Bedienzeilen siehe Kapitel 6.10.1.

28.2.5 Untermenü "Verteilzonen"

Hauptmenü > Inbetriebnahme > Kommunikation > Verteilzonen >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werk-</th>
<th>Bei Grundtyp</th>
<th>Hinweise in Kapitel…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aussentemperaturzone</td>
<td>----, 1...31</td>
<td>1..31</td>
<td>A, P, C, U</td>
<td>8.4.3</td>
</tr>
<tr>
<td>Luftverteilzone</td>
<td>----, 1...31</td>
<td>1</td>
<td>P</td>
<td>3.2, 12.3 bzw. 23.3</td>
</tr>
<tr>
<td>Wärmeverteilzone</td>
<td>----, 1...31</td>
<td>1</td>
<td>A, P, C1), U</td>
<td>25.1 bzw. 25.2</td>
</tr>
<tr>
<td>Wärmeverteilzone erzeug/seitig</td>
<td>----, 1...31</td>
<td>----</td>
<td>C1)</td>
<td>25.2</td>
</tr>
<tr>
<td>Wärmebed. Sollwertüberhöhung</td>
<td>0...50</td>
<td>0 K</td>
<td>C1)</td>
<td>25.2</td>
</tr>
<tr>
<td>Kälteverteilzone</td>
<td>----, 1...31</td>
<td>1</td>
<td>A, P, C, U</td>
<td>26.1 bzw. 26.2</td>
</tr>
<tr>
<td>Kälteverteilzone erzeug/seitig</td>
<td>----, 1...31</td>
<td>----</td>
<td>C</td>
<td>26.2</td>
</tr>
<tr>
<td>Kältebedarf Sollwertreduktion</td>
<td>0...50</td>
<td>0 K</td>
<td>C</td>
<td>26.2</td>
</tr>
</tbody>
</table>

1) nur wenn Grundtyp C und zugleich Heizen/Kühlen Umschaltung
Anwendungsfall mit Verteilzonen am Beispiel einer Kälteanlage mit Grundtyp C unter Verwendung der "Kälteverteilzone", sowie der "Kälteverteilzone erzeugerseitig":

28.2.6 Universelle Sende- und Empfangszonen

Das Gerät RMU7x0B ermöglicht den universellen Datenaustausch über die eigenen Klemmen, sowie über die Klemmen der Erweiterungsmodule RMZ7x. Der Datenaustausch erfolgt über KNX-Bus von Gerät zu Gerät.

Funktionsprinzip

- Universal-Eingänge, Digital- und Analog-Ausgänge können als Sendeobjekte (zu Sendezonen) verwendet werden
- Universal-Eingänge können als Empfangsobjekte (in Empfangszonen) verwendet werden
- Der Datenaustausch erfolgt, wie wenn die Klemmen der Geräte durch Draht verbunden wären.

Anzahl Sende- / Empfangszonen

Es sind maximal je 32 Sende- und Empfangszonen pro Linie erlaubt (zum KNX-Bus siehe N3127, P3127).

Hinweis

Aufgrund von KNX-Bus-Spezifikationen (z. B. Sendehäufigkeit) gibt es "erlaubte" und "nicht erlaubte" Anwendungen.
Der Einsatz universeller Sende- und Empfangszonen ist erlaubt und sinnvoll bei:

- Ansteuern von dezentralen Aggregaten wie Motoren, Pumpen usw.
- Einfachen Steuerfunktionen, die nicht zeitkritisch sind
- Gemeinsamer Weiterverarbeitung bzw. -verwendung von Bus-Informationen

Nachfolgende Anwendungen bzw. Ein-/Ausgangsgrössen dürfen nicht mittels universeller Sende- und Empfangszonen umgesetzt werden:

- Sicherheitsrelevante Anlagen und Einrichtungen (z. B. Brandabschaltung, Entrauchung, Frostschutzfunktion)
- Wenn die Anforderung "gleichzeitiges Startverhalten von Anlagen" besteht
- Anwendungen, in denen ein Kommunikationsausfall von Sende- oder Empfangszonen einen Schaden verursachen kann
- Regelstrecken, die zeitekritisch sind oder einen höheren Schwierigkeitsgrad haben (z. B. Drehzahlregelung über Druck, Feuchte)
- Hauptregelgrössen, die zwingend vorhanden sein müssen
- Erfassung und Auswertung von Impulsen

Nach dem Einschalten des RMU7x0B (Power-up), kann es einige Zeit dauern, bis die Signale vom Bus zur Verfügung stehen. Bei nicht erlaubten Anwendungen der Sende- und Empfangszone kann dies zu fehlerhaftem Verhalten der Anlage führen.

Um die Funktion zu aktivieren, muss im RMU7x0B bei einer Klemme die gewünschte Sende- oder Empfangszone eingestellt werden. Analog ist das Partnergerät einzustellen.

Der Sende-/Empfangsvorgang ist eine 1:n-Beziehung, d. h. in einer Sende-/Empfangszone sind ein Sender, aber mehrere Empfänger möglich.
Übersicht

<table>
<thead>
<tr>
<th>Empfangszonen</th>
<th>Sendezonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingänge (N.X1…A8(2).X4)</td>
<td>Eingänge (N.X1…A8(2).X4)</td>
</tr>
<tr>
<td></td>
<td>Digitale Ausgänge (N.Q1…A8(2).Q5)</td>
</tr>
<tr>
<td></td>
<td>Analoge Ausgänge (N.Y1…A8(2).Y2)</td>
</tr>
</tbody>
</table>

Einstellwerte

Hauptmenü > Inbetriebnahme > Kommunikation > LTE-Empfangszonen >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X1…A8(2).X4</td>
<td>---, 1…4095<sup>1</sup></td>
<td>---</td>
</tr>
</tbody>
</table>

Hauptmenü > Inbetriebnahme > Kommunikation > LTE-Sendezonen >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X1…A8(2).X4</td>
<td>---, 1…4095<sup>1</sup></td>
<td>---</td>
</tr>
<tr>
<td>N.Q1…A8(2).Q5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N.Y1…A8(2).Y2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1¹ Bei der Verwendung der universellen Sende- und Empfangszonen mit Linienkoppler bzw. IP-Router gelten folgende Bereichsangaben bei aktivierter Filtertabellen Funktion:

- 1…3839 sind für den Datenaustausch gesperrt
- 3840…4095 sind für den Datenaustausch geöffnet

Hinweis

Bei der Inbetriebnahme der Anlage können Bussignale mit Hilfe der Funktion "Simulation Eingänge" simuliert werden (Kapitel 8.1.3).

Störungsmeldungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Text</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5902</td>
<td>>1 gleiche LTE-Zone</td>
<td>Nicht dringende Meldung; muss nicht quittiert werden</td>
</tr>
</tbody>
</table>

Beispiel 1

In einem RMS705B (Gerät 1) liegt der Luftqualitäts-Mittelwert von 2 Luftqualitätssensoren vor. Dieser Wert wird als Sendeobjekt über einen Analog-Ausgang versendet und von einem RMU7x0B (Gerät 2) weiterverarbeitet.

Konzeption des Datenaustauschs

Für die Beispielaufgabe wird folgende Sende- und Empfangszone projektiert:

<table>
<thead>
<tr>
<th>RMS705B, Gerät 1</th>
<th>RMU7x0B, Gerät 2</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klemme Sendezone</td>
<td>Klemme Empfangszone</td>
<td></td>
</tr>
<tr>
<td>N.Y1 ∈</td>
<td>N.X1 ∈</td>
<td></td>
</tr>
</tbody>
</table>

Mittelwert Luftqualität

Konfiguration

Gerät 1

In RMS705B, Gerät 1 wird folgendes konfiguriert:

Hauptmenü > Inbetriebnahme > Kommunikation > LTE-Sendezonen >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.Y1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Gerät 2

In RMU7x0B, Gerät 2 wird folgendes konfiguriert:

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Eingangsbezeichner >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X1</td>
<td>ppm</td>
<td></td>
</tr>
</tbody>
</table>

Hauptmenü > Inbetriebnahme > Kommunikation > LTE-Empfangszonen >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Eine entfernt stehende Lüftungsregelung (RMU7x0B, Gerät 1) steuert einen Dachventilator (RMS705B, Gerät 2) an. Dabei wird ein in Gerät 1 gebildeter Freigabebefehl als Sendeobjekt über einen Digital-Ausgang versendet. Gerät 2 nutzt diesen Befehl zum Start des Dachventilators.

In umgekehrter Richtung wird eine allfällige Betriebsmeldung, die in Gerät 2 entsteht als Sendeobjekt über einen Digital-Ausgang an Gerät 1 gesendet, wo es entsprechend verarbeitet wird.

Für die Beispielauflage werden folgende Sende- und Empfangszonen projektiert:

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Sendezone</th>
<th>Klemme</th>
<th>Empfangszone</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.Q1</td>
<td>1</td>
<td>N.X1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freigabe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dachventilator</td>
</tr>
<tr>
<td></td>
<td>Empfangszone</td>
<td></td>
<td>Sendezone</td>
</tr>
<tr>
<td>N.X1</td>
<td>2</td>
<td>N.Q2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Betriebsmeldung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dachventilator</td>
</tr>
</tbody>
</table>

Konfiguration am RMU7x0B, Gerät 1 (Lüftungsregelung):

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Eingangsbezeichner >

Bedienzeile	Bereich	Werkeinstellung
N.X1 | Digital |

Hauptmenü > Inbetriebnahme > Kommunikation > LTE-Sendezonen >

Bedienzeile	Bereich	Werkeinstellung
N.Q1 | 1 |

Hauptmenü > Inbetriebnahme > Kommunikation > LTE-Empfangszonen >

Bedienzeile	Bereich	Werkeinstellung
N.X1 | 2 |
Konfiguration am RMS705B, Gerät 2 (Dachventilator):

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Eingangsbezeichner >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X1</td>
<td>Digital</td>
<td></td>
</tr>
</tbody>
</table>

Hauptmenü > Inbetriebnahme > Kommunikation > LTE-Sendezonen >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.Q2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Hauptmenü > Inbetriebnahme > Kommunikation > LTE-Empfangszonen >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Konfigurationsschema

Beispiel 3

In einem RMS705B (Gerät 1) liegen die Enthalpiewerte A, B vor, die aus Temperatur und relativer Feuchte errechnet wurden. Diese Werte werden als Sendeobjekt über die Analog-Ausgänge versendet und in einem zweiten Gerät von der Mischluftklappe oder der Wärmerückgewinnung für die MEU-Funktion verwendet.

Hinweis

Vor der Verwendung in Gerät 2 ist der Wertebereich der empfangenden Klemme (Gerät 2) dem unveränderlichen Wertebereich einer errechneten Enthalpie anzupassen. Die fix vorgegebenen Wertebereiche des Enthalpie-Rechners sind Kapitel 9.2 (P3124) zu entnehmen.

Konzeption des Datenaustauschs

Für die Beispielaufgabe wird folgende Sende- und Empfangszone projektiert:

<table>
<thead>
<tr>
<th>RMS705B, Gerät 1</th>
<th>RMU7x0B, Gerät 2</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klemme</td>
<td>Sendezone</td>
<td>Klemme</td>
</tr>
<tr>
<td>N.Y1</td>
<td>1</td>
<td>N.X1</td>
</tr>
<tr>
<td>N.Y2</td>
<td>2</td>
<td>N.X2</td>
</tr>
</tbody>
</table>

= Senden
= Empfangen
Konfiguration
Gerät 1
Am RMS705B, Gerät 1 wird folgendes konfiguriert:

Hauptmenü > Inbetriebnahme > Kommunikation > LTE-Sendezonen >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.Y1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>N.Y2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Konfiguration
Gerät 2
In Gerät 2 wird folgendes konfiguriert:

Hauptmenü > Inbetriebnahme > Zusatzkonfiguration > Eingangsbezeichner >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X1</td>
<td>kJ/kg</td>
<td></td>
</tr>
<tr>
<td>N.X2</td>
<td>kJ/kg</td>
<td></td>
</tr>
</tbody>
</table>

Einstellwerte
Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
Hauptmenü > Einstellungen > Eingänge > N.X1

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert unten</td>
<td>0.0 kJ/kg</td>
<td>50.0 kJ/kg</td>
</tr>
<tr>
<td>Wert oben</td>
<td>100.0 kJ/kg</td>
<td>50.0 kJ/kg</td>
</tr>
</tbody>
</table>

Hauptmenü > Inbetriebnahme > Einstellungen > ... oder
Hauptmenü > Einstellungen > Eingänge > N.X2

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert unten</td>
<td>0.0 kJ/kg</td>
<td>50.0 kJ/kg</td>
</tr>
<tr>
<td>Wert oben</td>
<td>100.0 kJ/kg</td>
<td>50.0 kJ/kg</td>
</tr>
</tbody>
</table>

Hauptmenü > Inbetriebnahme > Kommunikation > LTE-Empfangszonen >

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bereich</th>
<th>Werkeinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>N.X2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Konfigurationsschema

![Konfigurationsschema](image)
29 Hilfestellung bei Fehlern und Störungen

29.1 Umgang mit Störungen

Bei einer Störung erscheint die Störungsnr. (Störnr.) im Anzeigefeld des Bediengeräts.
Zudem können über Willkommen > Hauptmenü > Störungen > Störungen aktuell alle zurzeit anstehenden Störungen eingesehen werden.

Das weitere Vorgehen ist wie folgt:
1. Mit Hilfe der Fehlercode-Liste (Kap. 29.2) zum Kapitel mit der spezifischen Fehlerbeschreibung gehen
2. Unter der Spaltenüberschrift "Wirkung" die Art der Störungsquittierung identifizieren
3. Bedeutung des LED Signals mit untenstehender Tabelle zuordnen und die passende Aktion durchführen (z. B. Quittieren, Quittieren und Entriegeln und/oder Ursache der Störung suchen und abstellen)

<table>
<thead>
<tr>
<th>Art der Quittierung</th>
<th>Störung ist…</th>
<th>LED</th>
<th>Aktion</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Quittierung erforderlich</td>
<td>anstehend</td>
<td>leuchtet</td>
<td>keine Aktion erforderlich</td>
<td>leuchtet</td>
</tr>
<tr>
<td></td>
<td>nicht mehr anstehend</td>
<td>aus</td>
<td>Ursache beheben!</td>
<td>aus</td>
</tr>
<tr>
<td>Quittierung erforderlich</td>
<td>anstehend</td>
<td>blinkt</td>
<td>Erstes mal drücken (Quittieren)</td>
<td>leuchtet</td>
</tr>
<tr>
<td></td>
<td>nicht mehr anstehend</td>
<td>blinkt</td>
<td>Ursache beheben!</td>
<td>aus</td>
</tr>
<tr>
<td></td>
<td>Anstehend</td>
<td>blinkt</td>
<td>Zweites mal drücken (Entriegeln)</td>
<td>leuchtet</td>
</tr>
<tr>
<td>Quittieren und Entriegeln erforderlich</td>
<td>anstehend</td>
<td>blinkt</td>
<td>Erstes mal drücken (Quittieren)</td>
<td>leuchtet</td>
</tr>
<tr>
<td></td>
<td>nicht mehr anstehend</td>
<td>blinkt</td>
<td>Ursache beheben!</td>
<td>leuchtet</td>
</tr>
<tr>
<td></td>
<td>Anstehend</td>
<td>blinkt</td>
<td>Zweites mal drücken (Entriegeln)</td>
<td>aus</td>
</tr>
</tbody>
</table>
29.2 Fehlercode-Liste

<table>
<thead>
<tr>
<th>Code-Nr.</th>
<th>Fehler-/Störungsursache</th>
<th>Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Aussentemp.-Fühlerfehler</td>
<td>siehe 8.4.5 Aussentemperatur</td>
</tr>
<tr>
<td>11</td>
<td>>1 Aussentemperaturfühler</td>
<td>siehe 8.4.5 Aussentemperatur</td>
</tr>
<tr>
<td>12</td>
<td>Aussentemp.-Fühlerfehler Anl. 1</td>
<td>siehe 8.5.5 Raumtemperatur</td>
</tr>
<tr>
<td>60</td>
<td>Raumtemp.-Fühlerfehler in Anlage 1</td>
<td>siehe 8.5.5 Raumtemperatur</td>
</tr>
<tr>
<td>100</td>
<td>Simulation Eingänge aktiv</td>
<td>siehe 8.1.3 Eingangsklemmen-Simulation</td>
</tr>
<tr>
<td>101</td>
<td>[N.X1] Fühlerfehler, RMZ788(2).X4 Fühlerfehler</td>
<td>siehe 8.2.5 Analogale Eingänge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siehe 8.7.5 Fernsollwertgeber absolut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siehe 8.8.5 Fernsollwertgeber relativ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siehe 8.4.5 Aussentemperatur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siehe 8.5.5 Raumtemperatur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siehe 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wärmerückgewinner (Grundtyp A, P)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siehe 10.5.12 Mischluftklappe (Grundtyp A, P)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siehe 15.2.3 Allgemeinbegrenzer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siehe 15.3.3 Sequenzbegrenzer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siehe 15.6.3 Universalschaltung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siehe 16.6.1 Luftqualitätsregler (Grundtyp A, P)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siehe 25.8 Wärmebedarf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siehe 26.8 Kältebedarf</td>
</tr>
<tr>
<td>1111</td>
<td>Zuluft-Überlast</td>
<td>siehe 10.1.8 Ventilator (Grundtyp A, P)</td>
</tr>
<tr>
<td>1112</td>
<td>Zuluft-Strömungsstörung</td>
<td>siehe 10.1.7 Ventilator (Grundtyp A, P)</td>
</tr>
<tr>
<td>1113</td>
<td>Zuluft-Druckdiff.-Fühlerfehler</td>
<td>siehe 10.1.19 Ventilator (Grundtyp A, P)</td>
</tr>
<tr>
<td>1114</td>
<td>Zuluft Vorbefehl keine Rückmeldung</td>
<td>siehe 10.1.10 Ventilator (Grundtyp A, P)</td>
</tr>
<tr>
<td>1121</td>
<td>Abluft-Überlast</td>
<td>siehe 10.1.8 Ventilator (Grundtyp A, P)</td>
</tr>
<tr>
<td>1122</td>
<td>Abluft-Strömungsstörung</td>
<td>siehe 10.1.7 Ventilator (Grundtyp A, P)</td>
</tr>
<tr>
<td>1123</td>
<td>Abluft-Druckdiff.-Fühlerfehler</td>
<td>siehe 10.1.19 Ventilator (Grundtyp A, P)</td>
</tr>
<tr>
<td>1124</td>
<td>Abluft Vorbefehl keine Rückmeldung</td>
<td>siehe 10.1.10 Ventilator (Grundtyp A, P)</td>
</tr>
<tr>
<td>1210</td>
<td>[Pumpe 1] Störung</td>
<td>Siehe 10.2.4 Pumpe</td>
</tr>
<tr>
<td>1211</td>
<td>[Pumpe 1] Überlast</td>
<td>siehe 10.2.7 Pumpe</td>
</tr>
<tr>
<td>1212</td>
<td>[Pumpe 1] keine Strömung</td>
<td>siehe 10.2.6 Pumpe</td>
</tr>
<tr>
<td>1214</td>
<td>[Pumpe 1A] Überlast</td>
<td>siehe 10.2.7 Pumpe</td>
</tr>
<tr>
<td>1215</td>
<td>[Pumpe 1B] Überlast</td>
<td>siehe 10.2.7 Pumpe</td>
</tr>
<tr>
<td>1216</td>
<td>[Pumpe 1A] keine Strömung</td>
<td>siehe 10.2.6 Pumpe</td>
</tr>
<tr>
<td>1217</td>
<td>[Pumpe 1B] keine Strömung</td>
<td>siehe 10.2.6 Pumpe</td>
</tr>
<tr>
<td>1218</td>
<td>[Pumpe 1] Vorbefehl k. Rückmeldung</td>
<td>siehe 10.2.9 Pumpe</td>
</tr>
<tr>
<td>1220</td>
<td>[Pumpe 2] Störung</td>
<td>siehe 10.2.4 Pumpe</td>
</tr>
<tr>
<td>1221</td>
<td>[Pumpe 2] Überlast</td>
<td>siehe 10.2.7 Pumpe</td>
</tr>
<tr>
<td>1222</td>
<td>[Pumpe 2] keine Strömung</td>
<td>siehe 10.2.6 Pumpe</td>
</tr>
<tr>
<td>1224</td>
<td>[Pumpe 2A] Überlast</td>
<td>siehe 10.2.7 Pumpe</td>
</tr>
<tr>
<td>1225</td>
<td>[Pumpe 2B] Überlast</td>
<td>siehe 10.2.7 Pumpe</td>
</tr>
<tr>
<td>Code-Nr.</td>
<td>Fehler-/Störungsvorschlag</td>
<td>Wirkung</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>1226</td>
<td>[Pumpe 2A] keine Strömung</td>
<td>siehe 10.2.6 Pumpe</td>
</tr>
<tr>
<td>1227</td>
<td>[Pumpe 2B] keine Strömung</td>
<td>siehe 10.2.6 Pumpe</td>
</tr>
<tr>
<td>1228</td>
<td>[Pumpe 2] Vorbefehl k. Rückmeldung</td>
<td>siehe 10.2.9 Pumpe</td>
</tr>
<tr>
<td>1230</td>
<td>[Pumpe 3] Störung</td>
<td>siehe 10.2.4 Pumpe</td>
</tr>
<tr>
<td>1231</td>
<td>[Pumpe 3] Überlast</td>
<td>siehe 10.2.7 Pumpe</td>
</tr>
<tr>
<td>1232</td>
<td>[Pumpe 3] keine Strömung</td>
<td>siehe 10.2.6 Pumpe</td>
</tr>
<tr>
<td>1234</td>
<td>[Pumpe 3A] Überlast</td>
<td>siehe 10.2.7 Pumpe</td>
</tr>
<tr>
<td>1235</td>
<td>[Pumpe 3B] Überlast</td>
<td>siehe 10.2.7 Pumpe</td>
</tr>
<tr>
<td>1236</td>
<td>[Pumpe 3A] keine Strömung</td>
<td>siehe 10.2.6 Pumpe</td>
</tr>
<tr>
<td>1237</td>
<td>[Pumpe 3B] keine Strömung</td>
<td>siehe 10.2.6 Pumpe</td>
</tr>
<tr>
<td>1238</td>
<td>[Pumpe 3] Vorbefehl k. Rückmeldung</td>
<td>siehe 10.2.9 Pumpe</td>
</tr>
<tr>
<td>1240</td>
<td>[Pumpe 4] Störung</td>
<td>siehe 10.2.4 Pumpe</td>
</tr>
<tr>
<td>1241</td>
<td>[Pumpe 4] Überlast</td>
<td>siehe 10.2.7 Pumpe</td>
</tr>
<tr>
<td>1242</td>
<td>[Pumpe 4] keine Strömung</td>
<td>siehe 10.2.6 Pumpe</td>
</tr>
<tr>
<td>1244</td>
<td>[Pumpe 4A] Überlast</td>
<td>siehe 10.2.7 Pumpe</td>
</tr>
<tr>
<td>1245</td>
<td>[Pumpe 4B] Überlast</td>
<td>siehe 10.2.7 Pumpe</td>
</tr>
<tr>
<td>1246</td>
<td>[Pumpe 4A] keine Strömung</td>
<td>siehe 10.2.6 Pumpe</td>
</tr>
<tr>
<td>1247</td>
<td>[Pumpe 4B] keine Strömung</td>
<td>siehe 10.2.6 Pumpe</td>
</tr>
<tr>
<td>1248</td>
<td>[Pumpe 4] Vorbefehl k. Rückmeldung</td>
<td>siehe 10.2.9 Pumpe</td>
</tr>
<tr>
<td>3011</td>
<td>[Hauptregelgröße 1] Fühlerfehler</td>
<td>siehe 12.4 Zulufttemperaturregler, bedarfsgeführt (Grundtyp P) siehe 14.2.3 Universalregler (Grundtyp A, P, C, U) siehe 13 Vorlauftemperaturregler, bedarfsgeführt (Grundtyp C) siehe 15.1.5 Sequenzregler</td>
</tr>
<tr>
<td>3012</td>
<td>[Hauptregelgröße 2] Fühlerfehler</td>
<td>siehe 14.2.3 Universalregler (Grundtyp A, P, C, U) siehe 15.1.5 Sequenzregler</td>
</tr>
<tr>
<td>3013</td>
<td>[Hauptregelgröße 3] Fühlerfehler</td>
<td>siehe 14.2.3 Universalregler (Grundtyp A, P, C, U) siehe 15.1.5 Sequenzregler</td>
</tr>
<tr>
<td>3101</td>
<td>[Regler 1] unzulässige Regelabw.</td>
<td>siehe 15.7.1 Abweichungsmeldung</td>
</tr>
<tr>
<td>3102</td>
<td>[Regler 2] unzulässige Regelabw.</td>
<td>siehe 15.7.1 Abweichungsmeldung</td>
</tr>
<tr>
<td>3103</td>
<td>[Regler 3] unzulässige Regelabw.</td>
<td>siehe 15.7.1 Abweichungsmeldung</td>
</tr>
<tr>
<td>3111</td>
<td>WRG-Wirkungsgradabweichung</td>
<td>siehe 10.4.4 Wärmerückgewinner (Grundtyp A, P)</td>
</tr>
<tr>
<td>3201</td>
<td>Keine Wärme vorhanden</td>
<td>siehe 25.8 Wärmebedarf</td>
</tr>
<tr>
<td>3202</td>
<td>Keine Kälte vorhanden</td>
<td>siehe 26.8 Kältebedarf</td>
</tr>
<tr>
<td>3900</td>
<td>Brandabschaltung</td>
<td>siehe 24.4 Störungen</td>
</tr>
<tr>
<td>3901</td>
<td>Entrauchung</td>
<td>siehe 24.4.2 Störungen</td>
</tr>
<tr>
<td>3911</td>
<td>Filter verschmutzt</td>
<td>siehe 24.4.2 Störungen</td>
</tr>
<tr>
<td>3920</td>
<td>Frost</td>
<td>siehe 17.5.2 Frostschutz (Grundtyp A)</td>
</tr>
<tr>
<td>Code-Nr.</td>
<td>Fehler-/Störungsursache</td>
<td>Wirkung</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>3922</td>
<td>Frostgefahr Frost 1</td>
<td>siehe 17.5.2 Frostschutz (Grundtyp A und P)</td>
</tr>
<tr>
<td>3923</td>
<td>Frostgefahr Frost 2</td>
<td>siehe 17.5.2 Frostschutz (Grundtyp A und P)</td>
</tr>
<tr>
<td>3924</td>
<td>Frostgefahr Frost 3</td>
<td>siehe 17.5.2 Frostschutz (Grundtyp A und P)</td>
</tr>
<tr>
<td>3921</td>
<td>Frostschutz-Fühlerfehler</td>
<td>siehe 17.5.2 Frostschutz (Grundtyp A und P)</td>
</tr>
<tr>
<td>3931</td>
<td>Simulation VVS Zuluft</td>
<td>siehe 23.6 Volumenstromabgleich</td>
</tr>
<tr>
<td>3932</td>
<td>Simulation VVS Abluft</td>
<td>siehe 23.6 Volumenstromabgleich</td>
</tr>
<tr>
<td>5000</td>
<td>Keine Busspeisung</td>
<td>siehe 28.2.1 Kommunikation</td>
</tr>
<tr>
<td>5001</td>
<td>Systemzeitausfall</td>
<td>siehe 5.1.3 Zeit und Datum</td>
</tr>
<tr>
<td>5002</td>
<td>>1 Uhrzeitmaster</td>
<td>siehe 5.1.3 Zeit und Datum</td>
</tr>
<tr>
<td>5003</td>
<td>Ungültige Uhrzeit</td>
<td>siehe 5.1.3 Zeit und Datum</td>
</tr>
<tr>
<td>5101</td>
<td>Systemschaltuhrausfall Anl.1</td>
<td>siehe 6.9.5 Fehlerbehandlung</td>
</tr>
<tr>
<td>5102</td>
<td>>1 Schaltuhr in Anlage 1</td>
<td>siehe 6.9.5 Fehlerbehandlung</td>
</tr>
<tr>
<td>5111</td>
<td>[Schaltuhr 2] Ausfall</td>
<td>siehe 7.6 Schaltuhr 2 (Ein/Aus)</td>
</tr>
<tr>
<td>5201</td>
<td>Ferien-/Sondertagsprogr'ausfall</td>
<td>siehe 6.10.6 Ferien / Sondertage (Grundtyp A, P, C, U)</td>
</tr>
<tr>
<td>5202</td>
<td>>1 Ferien-/Sondertagsprogramm</td>
<td>siehe 6.10.6 Ferien / Sondertage (Grundtyp A, P, C, U)</td>
</tr>
<tr>
<td>5402</td>
<td>>1 gleiche geogr. Zone [1]</td>
<td>siehe 28.2.1 Kommunikation</td>
</tr>
<tr>
<td>5801</td>
<td>H/K Umschaltsignalsausfall</td>
<td>siehe 13 Vorlauftemperaturregler, bedarfsgeführt (Grundtyp C)</td>
</tr>
<tr>
<td>5802</td>
<td>>1 Heizen/Kühlen Umschaltsignal</td>
<td>siehe 0 Heizen/Kühlen Umschaltung</td>
</tr>
<tr>
<td>6001</td>
<td>>1 gleiche Gerätedresse</td>
<td>siehe 28.2.1 Kommunikation</td>
</tr>
<tr>
<td>7101</td>
<td>Störung Erweiterungsmodul</td>
<td>siehe 4.2.3 Grundkonfiguration; gleicher Störungstext für Modul 1..4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gleicher Störungstext für Modul 1..4</td>
</tr>
<tr>
<td>7104</td>
<td>Störung Erweiterungsmodul</td>
<td>siehe 4.2.3 Grundkonfiguration; gleicher Störungstext für Modul 1..4</td>
</tr>
<tr>
<td>9001</td>
<td>[Störungseingang 1] Störung</td>
<td>siehe 24.3 Störungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>siehe 24.3 Störungen</td>
</tr>
</tbody>
</table>
29.3 Behebung von Störungen

29.3.1 Störungsanzeige

Im Gerät anstehende Störungsmeldungen werden an der Leuchtdiode (LED) der Störungstaste angezeigt. Über diese Taste können Störungsmeldungen quittiert werden.

<table>
<thead>
<tr>
<th>Störungsmeldung</th>
<th>Meldung quittiert</th>
<th>LED-Zustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Störung anstehend</td>
<td>nein</td>
<td>blinkt</td>
</tr>
<tr>
<td>Störung anstehend</td>
<td>ja</td>
<td>leuchtet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(gilt auch für Störungsmeldungen, die nicht quittiert werden müssen!)</td>
</tr>
<tr>
<td>Störung nicht mehr anstehend</td>
<td>nein</td>
<td>blinkt</td>
</tr>
<tr>
<td>Störung nicht mehr anstehend</td>
<td>ja</td>
<td>aus</td>
</tr>
</tbody>
</table>

Ist auch ein Störungsrelais konfiguriert, so blinkt die LED der Störungstaste bei gezogenem Relais immer.

Hinweis

Leuchtet die LED der Störungstaste und kann nicht wegquittiert werden, so ist immer noch eine Störungsmeldung anstehend. Die Leuchtdiode (LED) erlischt erst, wenn keine Störung mehr ansteht.

29.3.2 Störungsquittierung

Keine Quittierung erforderlich

Dies gilt für alle Störungsmeldungen, die weder quittiert noch entriegelt werden müssen.

Beispiel

Fällt die Aussentemperatur aus, wird eine Störungsmeldung ausgegeben. Ist die Aussentemperatur wieder vorhanden, verschwindet die Störungsmeldung automatisch und die Anlage läuft normal weiter.

Quittieren

Dies gilt für alle Störungsmeldungen, die nur quittiert werden müssen. Eine Verriegelung und Entriegelung der Störung muss extern gelöst werden.

Achtung

Wenn die Störungsmeldung verschwindet (extern entriegelt wurde), geht die Anlage wieder in den normalen Betrieb über, auch wenn die Störungsmeldung nicht quittiert worden ist.

Beispiel

In der Anlage ist ein Frostschutzwächter eingebaut, welcher lokal entriegelt werden muss. Die Störungsanzeige dient lediglich dazu, sicherzustellen, dass die Störungsmeldung vom Servicepersonal zur Kenntnis genommen wird.

Quittieren und entriegeln

Dies gilt für alle Störungsmeldungen, die quittiert und entriegelt werden müssen. Nach dem Quittieren wird die Störungsmeldung aufrechterhalten, bis die Störung nicht mehr ansteht. Erst dann kann die Störungsmeldung entriegelt werden. Mit dem Entriegeln erlischt die Leuchtdiode in der Störungstaste.

Beispiel

Eine Filter-Störungsmeldung muss quittiert und entriegelt werden. Damit die Störungsmeldung nicht bei jedem Anlaufen der Anlage neu generiert wird, wird die Störungsmeldung zuerst nur quittiert. Erst wenn die Filter ausgewechselt worden sind, soll die Störungsmeldung entriegelt werden.

Am Regler können keine Störungsmeldungen anderer Regler quittiert werden.
29.3.3 Störungsmeldungen löschen

Am Bediengerät kann in der Serviceebene über die Bedienzeile "Störungen löschen" die Liste Störungshistorie gelöscht werden.

Hauptmenü > Störungen >

Funktionen

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Störungen löschen</td>
<td>Alle aktuellen Störungen werden intern entriegelt, die Liste "Störungshistorie" wird gelöscht</td>
</tr>
</tbody>
</table>

Bei Aktivieren dieser Funktion werden gleichzeitig alle anderen Störungsmeldungen auch entriegelt. Es bleiben also nur die noch anstehenden Störungen in der Anzeige.

Hinweis

Wird die Art der Quittierung bei einer anstehenden Störung geändert, kann es passieren, dass die Störungsmeldung weder quittiert noch entriegelt werden kann.
Mit dieser Funktion können auch diese Störungsmeldungen wieder entriegelt werden!

29.4 Behebung von Fehlern

<table>
<thead>
<tr>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
</table>
| Bei der Inbetriebnahme wurde fälschlicherweise die falsche Sprache eingerichtet. Wie finde ich "meine" Sprache? | 1. Drücken Sie die Tasten "ESC" und "OK" gleichzeitig
2. Wählen Sie die Passwortebene und geben Sie die Zahl 112 als Passwort ein (gleich wie internationaler Notruf) und bestätigen Sie dies mit der Taste "OK". Es folgt der Wechsel auf die englische Sprache.
3. Wechseln Sie im Menü "Settings > Device > Language" zu Ihrer Sprache |
<table>
<thead>
<tr>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Maximum-Economy-Umschaltung funktioniert nicht oder nicht richtig. Ein Verstellen des Sollwertes hat auch keine Wirkung.</td>
<td>Überprüfen Sie die Konfiguration. Wenn "MEU-Eingang 1" und "MEU-Eingang 2" konfiguriert worden sind, die Eingänge aber nicht die gleiche Einheit aufweisen oder einer der beiden Eingänge nicht angeschlossen ist, funktioniert die Maximum-Economy-Umschaltung nicht richtig.</td>
</tr>
<tr>
<td>Die Tasten am Raumgerät QAW740 funktionieren nicht.</td>
<td>Am Regler wird die Raumbetriebsart durch eine höhere Priorität übersteuert</td>
</tr>
</tbody>
</table>
30 Elektrische Anschlüsse

30.1 Anschlussregeln

Klemmenanschlusskonzept

Hinweis

Pro Klemme kann nur ein Draht oder nur eine Litze angeschlossen werden (Federzugtechnik).

Anschlussverfahren mit Federzugklemmen

1. Abisolieren (Länge 7...8 mm; bei Modulverbinder RMZ780: Länge 8...9 mm)
2. Draht und Schraubendreher (Grösse 0 bis 1; bei Modulverbinder: Grösse 0) ansetzen
3. Schraubendreher drücken und gleichzeitig Draht einschieben
4. Schraubendreher wegnnehmen

Arbeitschritte
30.2 Anschlussklemmen

30.2.1 Universalregler RMU7..B

Legende
- G, G0 Bemessungsspannung AC 24 V
- G1 Ausgangsspannung AC 24 V zur Speisung externer aktiver Fühler, Melder, Wächter oder Geber
- M Messnull für Signaleingang
- G0 Systemnull für Signalausgang
- X1...X8 Universal-Signaleingänge für LG-Ni 1000, 2x LG-Ni 1000 (Mittelwertbildung), T1, Pt 1000, DC 0...10 V, 0...1000 Ω (Sollwert), 1000...1175 Ω (rel. Sollwert), Impuls, Kontaktabfrage (potentialfrei)
- Y1...Y4 Steuer- oder Meldeausgänge, analog DC 0...10 V
- Q2x/3x/5x/6x/7x/potentialfreie Relaisausgänge (Schliesser) für AC 24...230 V
- Q1x/4x/potentialfreie Relaisausgänge (Wechsler) für AC 24...230 V
- CE+ KNX-Bus-Datenleitung, positiv
- CE– KNX-Bus-Datenleitung, negativ

30.2.2 Universalmodule RMZ785, RMZ787, RMZ788

Legende
- M Messnull für Signaleingang
- G0 Systemnull für Signalausgang
- G1 Speisung AC 24 V für angeschlossene aktive Geräte
- X1...X8 Universal-Signaleingänge für LG-Ni 1000, 2x LG-Ni 1000 (Mittelwertbildung), T1, Pt 1000, DC 0...10 V, 0...1000 Ω (Sollwert), 1000...1175 Ω (rel. Sollwert), Kontaktabfrage (potentialfrei)
- Y1, Y2 Steuer- oder Meldeausgänge, analog DC 0...10 V
- Q1x/2x/3x/potentialfreie Relaisausgänge (Schliesser) für AC 24...230 V
- Q5x potentialfreie Relaisausgänge (Wechsler) für AC 24...230 V
31 Anhang

31.1 Verwendete Abkürzungen

Nachstehend sind die am häufigsten vorkommenden und eventuell schwer verständlichen Abkürzungen zur schnellen Orientierung alphabetisch aufgeführt.

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>☀️</td>
<td>Heizen</td>
</tr>
<tr>
<td>☃️</td>
<td>Kühlen</td>
</tr>
<tr>
<td>(\Delta) (w)</td>
<td>Sollwertschiebung</td>
</tr>
<tr>
<td>(\Delta W_s)</td>
<td>Sommerkomp.-Delta</td>
</tr>
<tr>
<td>(\Delta W_W)</td>
<td>Winterkompensation-Delta</td>
</tr>
<tr>
<td>AC</td>
<td>Wechselspannung/-strom</td>
</tr>
<tr>
<td>AI</td>
<td>Analog Eingang</td>
</tr>
<tr>
<td>AO</td>
<td>Analog Ausgang</td>
</tr>
<tr>
<td>DC</td>
<td>Gleichspannung/-strom</td>
</tr>
<tr>
<td>DI</td>
<td>Digital Eingang</td>
</tr>
<tr>
<td>DO</td>
<td>Digital Ausgang</td>
</tr>
<tr>
<td>DX</td>
<td>Direktkühlung (direct expansion)</td>
</tr>
<tr>
<td>EIB</td>
<td>European Installation Bus (wird abgelöst durch KNX)</td>
</tr>
<tr>
<td>E_S</td>
<td>Sommerkompensation-Endpunkt</td>
</tr>
<tr>
<td>E_W</td>
<td>Winterkompensation-Endpunkt</td>
</tr>
<tr>
<td>FG</td>
<td>Frostgefahr-Grenzwert</td>
</tr>
<tr>
<td>F_S</td>
<td>Sommerkompensation-Startpunkt</td>
</tr>
<tr>
<td>F_W</td>
<td>Winterkompensation-Startpunkt</td>
</tr>
<tr>
<td>HMI</td>
<td>Mensch-Maschine-Schnittstelle (Human Machine Interface)</td>
</tr>
<tr>
<td>I</td>
<td>I-Verhalten</td>
</tr>
<tr>
<td>KNX</td>
<td>KNX-Bus (für Bedien- und Prozessinformationen)</td>
</tr>
<tr>
<td>KNX LTE-Mode</td>
<td>Neuer Kommunikationsstandard der von Synco und RXB verwendet wird</td>
</tr>
<tr>
<td>KNX S-Mode</td>
<td>wie EIB bisher</td>
</tr>
<tr>
<td>LCD</td>
<td>Flüssigkristallanzeige</td>
</tr>
<tr>
<td>LED</td>
<td>Leuchtdiode</td>
</tr>
<tr>
<td>LH</td>
<td>Luft erwärmer</td>
</tr>
<tr>
<td>LK</td>
<td>Luftkühler</td>
</tr>
<tr>
<td>MEU</td>
<td>Maximum-Economy-Umschaltung (MEU) der Luftklappen</td>
</tr>
<tr>
<td>P</td>
<td>P-Verhalten</td>
</tr>
<tr>
<td>PI</td>
<td>PI-Verhalten</td>
</tr>
<tr>
<td>SA</td>
<td>Schaltabstand</td>
</tr>
<tr>
<td>SD</td>
<td>Schalt differenz</td>
</tr>
<tr>
<td>SpC</td>
<td>Kühl-Sollwert</td>
</tr>
<tr>
<td>SpCCmf</td>
<td>Komfort-Kühl-Sollwert</td>
</tr>
<tr>
<td>SpCEco</td>
<td>Economy-Kühl-Sollwert</td>
</tr>
<tr>
<td>SpCLim</td>
<td>Kühl-Sollwert-Begrenzung</td>
</tr>
<tr>
<td>SpCPCmf</td>
<td>Prekomfort-Kühl-Sollwert</td>
</tr>
<tr>
<td>SpH</td>
<td>Heiz-Sollwert</td>
</tr>
<tr>
<td>SpHCmf</td>
<td>Komfort-Heiz-Sollwert</td>
</tr>
<tr>
<td>SpHEco</td>
<td>Economy-Heiz-Sollwert</td>
</tr>
<tr>
<td>SpHLim</td>
<td>Heiz-Sollwert-Begrenzung</td>
</tr>
<tr>
<td>SpHPCmf</td>
<td>Prekomfort-Heiz-Sollwert</td>
</tr>
<tr>
<td>SpSu</td>
<td>Zulufttemperatur-Sollwert</td>
</tr>
<tr>
<td>t</td>
<td>Zeit</td>
</tr>
<tr>
<td>TA</td>
<td>Aussentemperatur</td>
</tr>
<tr>
<td>TiCst</td>
<td>Austrudelzeit</td>
</tr>
<tr>
<td>TiRup</td>
<td>Hochlaufzeit</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Tn</td>
<td>Nachstellzeit</td>
</tr>
<tr>
<td>tNmin</td>
<td>Betriebszeit minimal für Nachtkühlung</td>
</tr>
<tr>
<td>TR</td>
<td>Raum- oder Ablufttemperatur</td>
</tr>
<tr>
<td>tSmin</td>
<td>Stützbetriebszeit minimal für Stützbetrieb</td>
</tr>
<tr>
<td>Tv</td>
<td>Vorhaltezeit</td>
</tr>
<tr>
<td>VVS</td>
<td>Variable Volumenströme (Grundtyp P)</td>
</tr>
<tr>
<td>w</td>
<td>Sollwert</td>
</tr>
<tr>
<td>wCwF</td>
<td>Kaltwasservorlauf-Sollwert</td>
</tr>
<tr>
<td>wF</td>
<td>Frostschutz-Sollwert</td>
</tr>
<tr>
<td>wFP</td>
<td>Anlage-AUS-Frostschutz-Sollwert</td>
</tr>
<tr>
<td>wR</td>
<td>Sollwert Raum- oder Ablufttemperatur</td>
</tr>
<tr>
<td>wz</td>
<td>Sollwert Zulufttemperatur</td>
</tr>
<tr>
<td>x</td>
<td>Istwert</td>
</tr>
<tr>
<td>xP</td>
<td>P-Band</td>
</tr>
<tr>
<td>xR</td>
<td>Raumtemperatur-Istwert</td>
</tr>
<tr>
<td>xZ</td>
<td>Zulufttemperatur-Istwert</td>
</tr>
</tbody>
</table>
31.2 Konfigurationsschemen

31.2.1 Erklärung der Darstellung

Der Regler verfügt über eine Vielzahl vorkonfigurierter Funktionsblöcke. Die Konfigurationsmöglichkeiten sind in den Konfigurationsschemen dargestellt; sie umfassen:

- Eingangsbezeichner (Eingänge, Eingangsfunktionen)
- Aggregate (Ausgänge, Ausgangsfunktionen)
- Funktionsblöcke für Regel- und Steuerfunktionen,

Im Konfigurationsschema können durch den Projektierenden die Verknüpfungen der einzelnen Ein- und Ausgangsfunktionen (bzw. deren interne Signale) mit den zugeordneten Klemmen eingezeichnet werden.

Verwendete Bezeichnungen

- Geräte und Erweiterungsmodule:
 - N Universalregler RMU7..B
 - A5 Universalmodul RMZ785
 - A7 Universalmodul RMZ787
 - A8 Universalmodul RMZ788

- Physikalische Eingänge:
 - X universal (analog oder digital)

- Physikalische Ausgänge:
 - Q Relais
 - Y DC 0...10 V

Regeln für die Eingänge

- Der Eingangsbezeichner kann ein Gerät sein oder ein spezieller Fühler (Aussentemperatur, Raumtemperatur, Zulufttemperatur, Ablufttemperatur, Frostschutz, Sollwertgeber, Impuls)
- Mehrfachverwendung von Eingängen ist möglich, keine Begrenzungen (z. B. Differenzdruckfühler zur Überwachung des Ventilatorantriebriemens und Freigabesignal für den Elektro-Lufterwärmer)
- Wird ein Eingang verdrahtet, so erscheinen auf der Anzeige nur die möglichen Einheiten (wird z. B. ein Luftqualitätsfühler verdrahtet, so erscheinen nur Eingänge mit der Bezeichnung "ppm")
- Die Alarmierung für Eingänge ist nur aktiv, wenn der Eingang vor Beendigung der Inbetriebnahme angeschlossen wird
- Wird ein Eingangsbezeichner geändert, so ändern sich alle damit verbundenen Einstellungen (z. B. Xp war zuvor 28 K, jetzt ist es 10 Pa)

Vorgehen bei Zusatzkonfiguration

- Reihenfolge der Konfiguration:
 - Zuerst die Grundkonfiguration, dann die Zusatzkonfiguration
 - Zuerst die Eingangsbezeichner, dann die Aggregate und dann die Regelfunktionen

- Verdrahtungsmöglichkeiten:
 - Immer vom Pfeil "x" zur Leitung "y"
 - Von der Funktion zum Eingang: "x" zu "x", "a" zu "x", "d" zu "x", "i" zu "x"
 - Vom Ausgangsblock zur Ausgangsklemme: Analog "Y" zu "Y"
 - Relais "Q" zu "Q"
 - Vom Regler: Last "y" zu "y", Pumpen "p" zu "p"

Grau hinterlegte Fläche (z. B. 720) bedeutet: Nur in diesem Gerätetyp verfügbar

Regeln für die Ausgänge

- Ausgangsfunktionen müssen auf die betreffenden Klemmen verdrahtet werden; jede Ausgangsklemme kann nur einmal verwendet werden (z. B. N.Q1 für Pump 1)
- Ausgangsfunktionen haben bis maximal 3 Lastsignal-Eingänge mit Maximalauswahl (z. B. öffnet das Ventil des Luftkühlers wenn die Raumtemperatur oder die Raumluftfeuchte zu hoch ist)
31.2.2 Konfigurationsschemen-Überblick

Die genaue Aufteilung der Ein- und Ausgänge ist dem Konfigurationsschema zu entnehmen.

Grundkonfiguration

<table>
<thead>
<tr>
<th>Konfiguration</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anlagentyp</td>
<td></td>
</tr>
<tr>
<td>Grundtyp A: Raumtemperatur-Lüftungsregler</td>
<td>(Sequenzregler 1 ist Raumtemperaturregler, Raum-Zulufttemperatur-Kaskadenregler oder Zulufttemperaturregler)</td>
</tr>
<tr>
<td>Grundtyp P: Zulufttemperaturregler, bedarfsgeführt</td>
<td>(Sequenzregler 1 ist Zulufttemperaturregler)</td>
</tr>
<tr>
<td>Grundtyp C: Vorlauf temperaturregler, bedarfsgeführt</td>
<td>(Sequenzregler 1 ist bedarfsgeführter Kaltwasser-Vorlauff temperaturregler)</td>
</tr>
<tr>
<td>Grundtyp U: Universalregler</td>
<td>(Sequenzregler 1 ist Universalregler)</td>
</tr>
<tr>
<td>A01…A05: Wahl einer programmierten Anwendung</td>
<td>(Aktivieren einer im Regler gespeicherten Konfiguration)</td>
</tr>
<tr>
<td>□ RMZ785</td>
<td></td>
</tr>
<tr>
<td>□ RMZ787(1), (2)</td>
<td>Zuschaltung weiterer Ein- und Ausgänge mit den Erweiterungsmodulen RMZ785, RMZ787 und RMZ788. Funktionen des Reglers können auf diese Ein-/Ausgänge konfiguriert werden</td>
</tr>
<tr>
<td>□ RMZ788(1), (2)</td>
<td>Eingabe, welche Module in welcher Reihenfolge (Position) am Regler angeschlossen sind; total maximal 4 Module</td>
</tr>
</tbody>
</table>

Eingangsbezeichner

<table>
<thead>
<tr>
<th>Eingänge</th>
<th>Konfiguration</th>
<th>Funktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X1…RMZ788.X4</td>
<td>Eingabe des Eingangsbezeichners</td>
<td>• Einheiten: °C, %, g/kg, kJ/m³, m/s, bar, mbar, Pa, ppm, Universal 000.0 (Anzeige mit einer Nachkommastelle), Universal 0000 (Anzeige ohne Nachkommastelle). Die Einheit wird für die Anzeige im Display benötigt. Alle von dieser Einheit abhängigen Einstellungen (z. B. P-Bänder) werden mit dieser Einheit angezeigt. Fühler für °C: LG-Ni1000, 2xLG-Ni1000 (Mittelwertbildung), T1, Pt1000, DC 0…10 V, alle anderen Einheiten DC 0…10 V, Bereich einstellbar • Digital (Eingang für potentialfreie Kontakte) • Spezielle Bezeichner: Raumtemperatur, Aussentemperatur, Ablufttemperatur, Zulufttemperatur, Frostsicherheit, Fernsollwertgeber, Impuls. Bei den speziellen Bezeichnern werden interne Verbindungen vom Regler direkt gezogen • Impuls • Jedem Eingang ist ein Name zuordnen</td>
</tr>
<tr>
<td>N.X1…RMZ788.X4</td>
<td>Raumtemperatur</td>
<td>Nur in Grundtyp A, auch in Kombinationen mit Raumgerät möglich (Mittelwertbildung). Fühler wie unter "Fühler für °C" beschrieben</td>
</tr>
<tr>
<td>N.X1…RMZ788.X4</td>
<td>Aussentemperatur</td>
<td>Aussentemperatur, Fühler wie unter "Fühler für °C" beschrieben, für folgende Funktionen: • Sommer-/Winterkompensation • Sequenzsperrung nach TA • Ein der Pumpe bei tiefen Aussentemperaturen • Sperren der 2. Ventilatorstufe bei tiefen Aussentemperaturen • Maximalbegrenzung der Aussenluftklappe bei tiefen Aussentemperaturen</td>
</tr>
<tr>
<td>N.X1…RMZ788.X4</td>
<td>Ablufttemperatur</td>
<td>Nur in Grundtyp A. Fühler wie unter "Fühler für °C" beschrieben, für folgende Funktionen: • Ablufttemperaturregelung, Abluft-Zuluft-Kaskadenregelung</td>
</tr>
</tbody>
</table>
Zulufttemperatur | Nur in Grundtyp A. Fühler wie unter "Fühler für °C" beschrieben, für folgende Funktionen:
- Regelgrössen für Zulufttemperatur

Frostschutz | Frostschutzfunktion wählbar für Sequenzregler 1, 2 oder 3 für:
- Wasserseitiger Frostschutz (Eingang LG-Ni 1000) mit 2 Phasen, PI-Regelung bei ausgeschalteter Anlage.
- Luftseitiger Frostschutz (Eingang DC 0…10 V = 0…15 °C) mit 2 Phasen
- Frostwächter
- Vorwärmfunktion

Frostschutzwächter 1
Frostschutzwächter 2
Frostschutzwächter 3 | • Frostschutzwächter direkt wirkend auf entsprechenden Sequenzregler 1, 2 oder 3

[Regler 1] Fernsollwertgeber
[Regler 2] Fernsollwertgeber
[Regler 3] Fernsollwertgeber | • Fern w1: Absolut für Sequenzregler 1 bis 3 (0…1000 Ω oder DC 0…10 V)
- Fern rel: Relativ für Raumtemperatur in Grundtyp A
 Sequenzregler 1 (1000…1175 Ω = -3...+3 K)

Impuls | Für einen Eingang den Eingangsbezeichner Impuls wählen

Regel- und Steuerfunktionen

<table>
<thead>
<tr>
<th>Regler</th>
<th>Konfiguration</th>
<th>Funktionen</th>
</tr>
</thead>
</table>
| Regler 1 Grundtyp A: | Sequenzbegrenzer (Seq. Begr.)
- Kask./Konst.-Umschalteingang
- Sequenz S1…S5 Last (y)
- Sequenz S1…S5 Pumpe (p)
- Regelstrategie | Sequenzregler, einsetzbar als P-, PI- oder PID-Regler
Es stehen verschiedene Regelungsarten zur Verfügung:
- Zulufttemperaturregelung
- Raumtemperaturregelung (optional mit Zuluftbegrenzung)
- Ablufttemperaturregelung (optional mit Zuluftbegrenzung)
- Raum/Zulufttemperatur-Kaskadenregelung
- Abluft/Zulufttemperatur-Kaskadenregelung
- Zuordnung der Sequenzen konfigurierbar, an jeder Sequenz kann ein Lastausgang (Stetiger Ausgang A…D, Wärmerückgewinner, Mischluftklappe, Stufenschalter 1…5) und eine Pumpe angeschlossen werden
- Heizsequenzen S1, S2 und S3 (\(______\))
- Kühlsequenzen S4 und S5, (\(____\))
- Zulufttemperaturbegrenzer wirkt auf alle Sequenzen
- Sequenzbegrenzer, einstellbar als Min.- oder Max.-Begrenzer, wirkt auf eine einstellbare Sequenz (schliessend)
- Stützbetrieb Raumtemperatur
- Nachkühlung des Raumes
- 2. Ventilatorstufe bei grosser Heiz- oder Kühllast im Raum
- Sommer-/Winterkompensation mit Aussentemperatur
- Sequenzsperrung nach TA
- Störungsmeldung bei unzulässiger Regelabweichung aktivierbar

| Regler 1 Grundtyp P: | Universalschiebung (\(____\))
- Allgemeinbegrenzer (Allg. Begr.)
- Sequenzbegrenzer (Seq. Begr.)
- Sequenz S1…S5 Last (y)
- Sequenz S1…S5 Pumpe (p) | Aktivierung des Sequenzreglers rein bedarfsgeführt, einsetzbar als P-, PI- oder PID-Regler, für bedarfsgeführte Zulufttemperaturregelung im Zusammenhang mit Einzelraumregler (Zulufttemperaturfühler fix auf N.X1 verdrahtet)
- Zuordnung der Sequenzen konfigurierbar, an jeder Sequenz kann ein Lastausgang (Stetiger Ausgang A…D, Stufenschalter 1…5) und eine Pumpe angeschlossen werden
- Heizsequenzen S1, S2 und S3 (\(______\))
- Kühlsequenzen S4 und S5, (\(____\))
- Allgemeinbegrenzer wirkt auf alle Sequenzen
- Sequenzbegrenzer, einstellbar als Min. oder Max. Begrenzer, wirkt auf eine einstellbare Sequenz (schliessend)
Luftqualitätsregler

Konfiguration
- Eingang

Funktionen
- Regelung der Raumluftqualität
 - Öffnen der Aussenluftklappe
 - Einschalten der Ventilatoren bei schlechter Luftqualität (Prekomfort, Economy)
 - Umschalten der Ventilatorstufen (bei 2-stufigen Ventilatoren)
 - Erhöhen der Ventilatordrehzahl (drehzahlgesteuerte Ventilatoren ohne Druckregelung)

Betriebsarten / Schaltuhren

Betriebsart

<table>
<thead>
<tr>
<th>Grundtyp A und U:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timerfunktion (_FILL)</td>
</tr>
<tr>
<td>Raumbet’art-Eing.1 (¶)</td>
</tr>
<tr>
<td>Raumbet’art-Eing.2 (¶)</td>
</tr>
<tr>
<td>Ferrineingang (¶)</td>
</tr>
<tr>
<td>Sondertageeingang (¶)</td>
</tr>
<tr>
<td>Betriebsart-Relais 1, 2</td>
</tr>
</tbody>
</table>

Funktionen
- Raumbetriebsarten
 - Timerfunktion: Digitaler Eingang für Raumbetriebsart Komfort für eine einstellbare Zeit
 - Vorgabe einer einstellbaren Raumbetriebsart mit Raumbetriebsart-Eingang 1
 - Raumbetriebsartschalter mit Raumbetriebsart-Eingang 1+2
 - Ferrineingang und Sondertageeingang: Digitaler Eingang für Ferien (einstellbare Raumbetriebsart) oder Sondertag (Sondertagsprogramm der Schaltuhr)
 - Einstellungen für die Anlagenbetriebsarten-Möglichkeiten (wie Stützbetrieb, Umluftbetrieb)
 - Ausgabe der Betriebsart über Relaiskontakte
Grundtyp P:
- Schaltuhr (Ja, Nein)
- Ferieneingang (c)
- Sondertageeingang (d)
- Brandabschaltung (Brand)
- Entrauchung (Zuluft, Abluft)
- Betriebsartrelais 1, 2

Schaltuhr kann für andere Anwendungen aktiviert werden, wirkt auf den Bus

Ferieneingang und Sondertageeingang: Digitaler Eingang für Ferien (einstellbare Raumbetriebsart) oder Sondertag (Sondertagsprogramm der Schaltuhr)

Brand- und Entrauchungseingänge zur Steuerung der Anlage und Meldung an Einzelraumregler via Bus

Ausgabe der Betriebsart über Relaiskontakte

Grundtyp C:
- Anforderungseingang
- Schaltuhr (Ja, Nein)
- Ferieneingang (c)
- Sondertageingang (d)
- Betriebsartrelais 1, 2

Anforderungseingang für externes Anforderungssignal Kälte

Schaltuhr kann für andere Anwendungen aktiviert werden; wirkt auf den Bus

Ferieneingang und Sondertageeingang: Digitaler Eingang für Ferien (einstellbare Raumbetriebsart) oder Sondertag (Sondertagsprogramm der Schaltuhr)

Ausgabe der Betriebsart über Relaiskontakte

Heizen/Kühlen Umschaltung

<table>
<thead>
<tr>
<th>Heizen / Kühlen-Umschaltung</th>
<th>Konfiguration</th>
<th>Funktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapitel 27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 2-Rohr-System H/K (2/0)
- H/K-Umschaltstellung (5/0)
- Umschaltung mit Betriebswahlschalter (9)
- Umschaltung nach Datum (10)

Umschaltung (Changeover) der Betriebsart Heizen oder Kühlen in 2-Rohr-Systemen

Vorgabe Heizen/Kühlen am Gerät erzeugt oder als Signal vom Bus empfangen

Umschaltung nach analogem oder digitalem Eingang

Umschaltung mit Betriebswahlschalter

Umschaltung nach Datum

Störungen

<table>
<thead>
<tr>
<th>Störungen</th>
<th>Konfiguration</th>
<th>Funktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapitel 24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Störungstaste extern
- Störungseingang 1 bis 10
- Störungsrelais 1 und 2
- Filterüberwachung (5)
- Brandabschaltung (Brand)
- Entrauchung (Zuluft, Abluft)
- Vent.-Freigab'relais

10 universelle Störungsmeldeeingänge, Störungsmeldeverzögerung, Störungsquittierung (Keine, Quittieren), Störungspriorität (Dringend, Nicht dringend) und Störungswirkung (Stopp, Kein Stopp) einstellbar

2 Störungsmelderelais, Priorität (Dringend, Nicht dringend, Alle) und Signalisation einstellbar

Filterüberwachung, Brandabschaltung und Entrauchung

Ventilator-Freigabereilais (wenn externer Ventilatorschalter, keine Freigabe bei Störung mit Anlagenstopp, bei Entrauchung bleiben die Ventilatoren freigegeben)

Direkte Anschlussmöglichkeit von analogen Signalen, einstellbare Schwellwerte

Jedem Störungseingang ist ein Name zuordenbar
Datenerfassung

Trend

Konfiguration

- Eingang

Funktionen

- Der Trend dient dem zeitlichen Aufzeichnen von Signalverläufen.
- 4 unabhängige Trendkanäle
- Aufzeichnung von lokalen Eingängen, Raumtemperaturen und Aussentemperatur vom Bus
- Darstellung von zwei Kanälen gleichzeitig
- Ansichten: 8-Minuten, 8-Stunden, 24-Stunden und 6-Tageshistorie

Zähler

Konfiguration

- Eingang

Funktionen

- Erfassen von Impulsgebern und Anzeige der kumulierten Werte, wählbare Einheit, Wertigkeit, Darstellung usw.

Aggregate

Zuluftventilator

Konfiguration

- Stufe 1 (1Q)
- Stufe 2 (2Q)
- Drehzahl (Y)
- Vorbefehlausgang (\(\phi\))
- Vorbefehlrückmeldung (\(\varphi\))
- Druckfühler (\(\Delta p\))
- Strömungsmeldung (\(V\))
- Überlastmeldung (\(\Omega\))
- Startvorgabe 1 / 2
- Stoppvorgabe 1 / 2

Funktionen

- Einsetzbar für 1-stufige, 2-stufige oder drehzahlgeregelte Ventilatoren
- Ansteuerungsmöglichkeiten für Ventilatoren mit variabler Drehzahl
- Zuordnung fixer Drehzahlen für 1- oder 2-stufigen Betrieb
- Regelung auf konstanten Kanaldruck (Messung statischer Druck)
- Regelung auf konstanten Volumenstrom für 1- oder 2-stufigen Betrieb (2 Sollwerte, Messung dynamischer Druck)
- Regelung auf konstanten Volumenstrom für 1- oder 2-stufigen Betrieb (2 Sollwerte, Messung lineares Volumenstromsignal)
- 2. Stufe einschaltbar über Schaltuhr (Uhrvorrang Stufe 2), Raumtemperaturregler oder Luftqualitätsregler
- 2. Stufe kann bei tiefen Aussentemperaturen gesperrt werden
- Umluftbetrieb möglich
- Konfigurierbarer Vorbefehlausgang und Rückmeldung
- Einstellbare Anlaufverzögerung, separat für Zuluft- und Abluft-Ventilator
- Ventilatorfreigabereils Vent.-Freigab’relais und Entrauchung mit Ventilatoren (siehe Störungen)
- Ventilatoren direkt ein- und ausschaltbar über die Start- und Stoppvorgaben (Stopp des Zuluftventilators bewirkt einen Anlagenstopp)
- Betriebsstundenerfassung

Abluftventilator

Konfiguration

- Stufe 1 (1Q)
- Stufe 2 (2Q)
- Drehzahl (Y)
- Vorbefehlausgang (\(\phi\))
- Vorbefehlrückmeldung (\(\varphi\))
- Druckfühler (\(\Delta p\))
- Strömungsmeldung (\(V\))
- Überlastmeldung (\(\Omega\))
- Startvorgabe 1 / 2
- Stoppvorgabe 1 / 2

Funktionen

- Einsetzbar für 1-stufige, 2-stufige oder drehzahlgeregelte Ventilatoren
- Ansteuerungsmöglichkeiten für Ventilatoren mit variabler Drehzahl
- Zuordnung fixer Drehzahlen für 1- oder 2-stufigen Betrieb
- Regelung auf konstanten Kanaldruck (Messung statischer Druck)
- Regelung auf konstanten Volumenstrom für 1- oder 2-stufigen Betrieb (2 Sollwerte, Messung dynamischer Druck)
- Regelung auf konstanten Volumenstrom für 1- oder 2-stufigen Betrieb (2 Sollwerte, Messung lineares Volumenstromsignal)
- 2. Stufe einschaltbar über Schaltuhr (Uhrvorrang Stufe 2), Raumtemperaturregler oder Luftqualitätsregler
- 2. Stufe kann bei tiefen Aussentemperaturen gesperrt werden
- Umluftbetrieb möglich
- Konfigurierbarer Vorbefehlausgang und Rückmeldung
- Einstellbare Anlaufverzögerung, separat für Zuluft- und Abluft-Ventilator
- Ventilatorfreigabereils Vent.-Freigab’relais und Entrauchung mit Ventilatoren (siehe Störungen)
- Ventilatoren direkt ein- und ausschaltbar über die Start- und Stoppvorgaben (Stopp des Zuluftventilators bewirkt einen Anlagenstopp)
- Betriebsstundenerfassung

Pumpe / Zwillingspumpen

Konfiguration

- Pumpe A
- Pumpe B
- Vorbefehlausgang (\(\phi\))
- Vorbefehlrückmeldung (\(\varphi\))
- Strömungsmeldung (\(V\))
- Überlastmeldung (\(\Omega\))
- Startvorgabe 1 / 2
- Stoppvorgabe 1 / 2
- Betr’artbedingt Ein (\(\Theta\))

Funktionen

- Einsetzbar als Einfachpumpe oder als Zwillingspumpen (z. B. Luftwärmerpumpe) oder als Hauptpumpe (z. B. bei Kaltwasservorregler)
- EIN über Lastsignal von Sequenzregler (max. von 2 Sequenzen mit Maximalauswahl, Schaltpunkte einstellbar), EIN nach Betriebsart (Betr’artbedingt Ein), TA-bedingt Ein (einstellbar).
- Ausschaltverzögerung einstellbar
- Pumpenkick einstellbar
- Konfigurierbarer Vorbefehlausgang und Rückmeldung
- Pumpe direkt ein- und ausschaltbar über die Start- und Stoppvor-
Stetige Ausgänge → Kapitel 10.3

<table>
<thead>
<tr>
<th>Konfiguration</th>
<th>Funktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stetiger Ausgang A…D (Y)</td>
<td>Für stetige Signale DC 0…10 V, z. B. für Ventilansteuerung</td>
</tr>
<tr>
<td>Eingang</td>
<td>Lastsignal von Sequenzregler (von max. 3 Sequenzen mit Maximalkauswahl)</td>
</tr>
<tr>
<td>Start Vorgabe</td>
<td>"Stellsignal minimal und "Stellsignal maximal" einstellbar</td>
</tr>
<tr>
<td>Freigabe</td>
<td>Invertierung einstellbar</td>
</tr>
</tbody>
</table>

WRG → Kapitel 10.4

<table>
<thead>
<tr>
<th>Konfiguration</th>
<th>Funktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgang (Y)</td>
<td>Für die Ansteuerung eines Wärmerückgewinners</td>
</tr>
<tr>
<td>MEU-Eingang 1</td>
<td>Konfiguration immer mit Lastsignal "Heizen" vom Sequenzregler (von max. 2 Sequenzen mit Maximalkauswahl)</td>
</tr>
<tr>
<td>MEU-Eingang 2</td>
<td>Maximum-Economy-Umschaltung, wahlweise mit einem Eingang (digital oder analog) oder 2 Eingängen (Differenzmessung)</td>
</tr>
<tr>
<td>Wirkungsgrad 1</td>
<td>Wirkungsgradüberwachung mit Fühler in Zuluft nach WRG oder mit Fühler in Fortluft</td>
</tr>
<tr>
<td>Wirkungsgrad 2</td>
<td>WRG hilft kühlen, wenn das Luftkühlerventil öffnet (auch im Entfeuchtefall)</td>
</tr>
<tr>
<td>Luftkühlerventil (stetig, schaltend)</td>
<td>"Stellsignal minimal" und "Stellsignal maximal" einstellbar</td>
</tr>
<tr>
<td>Freigabe über Starteingang</td>
<td>Invertierung einstellbar</td>
</tr>
</tbody>
</table>

Mischluftklappe → Kapitel 10.5

<table>
<thead>
<tr>
<th>Konfiguration</th>
<th>Funktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgang (Y)</td>
<td>Für die Ansteuerung der Mischluftklappen</td>
</tr>
<tr>
<td>MEU-Eingang 1</td>
<td>Konfiguration vom Sequenzregler (von max. 2 Sequenzen mit Maximalkauswahl)</td>
</tr>
<tr>
<td>MEU-Eingang 2</td>
<td>Ausgangssignal DC 0…10 V (geschlossen/offen bezieht sich auf die Aussenluftklappe)</td>
</tr>
<tr>
<td>Luftkühlerventil</td>
<td>Regelung der Mischlufttemperatur</td>
</tr>
<tr>
<td>Mischlufttemperatur (TMil)</td>
<td>Maximum-Economy-Umschaltung, wahlweise mit einem Eingang (digital oder analog) oder 2 Eingängen (Differenzmessung)</td>
</tr>
<tr>
<td>Klappen hilft kühlen, wenn das Luftkühlerventil öffnet (auch im Entfeuchtefall)</td>
<td>Anfahrbetrieb wählbar</td>
</tr>
<tr>
<td>"Stellsignal minimal" und "Stellsignal maximal" einstellbar, Maximalstellung kann nach Aussentemperatur geschoben werden</td>
<td></td>
</tr>
</tbody>
</table>

Stufenschalter → Kapitel 10.6, 10.7

<table>
<thead>
<tr>
<th>Konfiguration</th>
<th>Funktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufe 1 bis ... (Q...)</td>
<td>Für die Ansteuerung eines stufigen Aggregates</td>
</tr>
<tr>
<td>Stetiger Ausgang (Y)</td>
<td>Jeder Stufe kann in Abhängigkeit des Lastsignals vom Sequenzregler (von max. 3 Sequenzen mit Maximalkauswahl)</td>
</tr>
<tr>
<td>Freigabe extern</td>
<td>Wählbar ob:</td>
</tr>
<tr>
<td>1+2 verbinden</td>
<td>Linearer Stufenschalter zum Schalten von gleich grossen Stufen oder Aggregaten mit gleichen Leistungen oder Führungs-/Folgesteuerung (Laufprioritätsumschaltung)</td>
</tr>
</tbody>
</table>
Binärer Stufenschalter zum Schalten von binär gestuften Aggregaten.
- Stufenschalter sind kaskadierbar
- "Freigabe extern" des Stufenschalters mit digitalem Eingang, z. B. Strömungsüberwachung beim Elektro-Lufterwärmer
- Nachlaufzeit für Ventilatoren einstellbar, z. B. bei angeschlossenem Elektro-Lufterwärmer
- Stetiger Ausgang konfigurierbar, gleiche Funktion wie "Stetige Ausgänge"
- Sperrzeit (Wiedereinschaltverzögerung) einstellbar (Zeit gilt für alle Stufen)

- Stufe 1 bis ... (Q...)
- Stetiger Ausgang (Y)
- Freigabe extern

Für die Ansteuerung eines stufigen Aggregates
- Jeder Stufe kann in Abhängigkeit des Lastsignals vom Sequenzregler (von max. 3 Sequenzen mit Maximalauswahl) ein Ein- und Ausschaltpunkt zugeordnet werden; die Schaltpunkte dürfen sich überlappen und können invertiert (EIN<AUS) werden
- "Freigabe extern" des Stufenschalters mit digitalem Eingang, z. B. Strömungsüberwachung beim Elektro-Lufterwärmer
- Nachlaufzeit für Ventilatoren einstellbar, z. B. bei angeschlossenem Elektro-Lufterwärmer
- Stetiger Ausgang konfigurierbar
- Sperrzeit (Wiedereinschaltverzögerung) einstellbar (Zeit gilt für alle Stufen)

Logikfunktionen
Kapitel 10.8
- Eingang
- Logik-Funktion
- Betriebsschalter
- Relaisausgang
- Digitaler Ausgang

Konfiguration
Funktionen
- 4 Logik-Blöcke, Logik 1 bis 4
- Bildung eines digitalen Signals aus stetigen Eingangssignalen
- Wählbare Logik für Logik A, B und C
- Betriebsschalter wählbar
- Beim Ausgangssignal Verzögerungszeiten einstellbar
- Auswählbare Zeitformate

Wärmebedarf
Kapitel 25
- Regler 1 bis 3
- Überwachung
- Wärmebedarf stetig
- Wärmebedarfsrelais

Konfiguration
Funktionen
- Funktionen der Anlage, wenn Wärme verlangt wird
 - Einstellung, an welchen Sequenzen die Heizventile konfiguriert sind
 - Überwachung: Wenn Wärme verlangt wird, aber nach einer einstellbaren Zeit keine verfügbar ist, kann eine Störungsmeldung ausgelöst werden; einstellbar ob mit Anlagenstopp. Digitaler Eingang oder Temperaturfühler
 - Wärmebedarfsrelais oder stetiger Ausgang zur Weiterleitung des Wärmebedarfes
 - Der Wärmebedarf kann auch über den Bus versandt werden, siehe Kommunikation

Kältebedarf
Kapitel 26
- Regler 1 bis 3
- Überwachung
- Kältebedarf stetig
- Kältebedarfsrelais

Konfiguration
Funktionen
- Funktionen der Anlage, wenn Kälte verlangt wird
 - Einstellung, an welchen Sequenzen die Kühlventile konfiguriert sind
 - Überwachung: Wenn Kälte verlangt wird, aber nach einer einstellbaren Zeit keine verfügbar ist, kann eine Störungsmeldung ausgelöst werden, einstellbar ob mit Anlagenstopp. Digitaler Eingang oder Temperaturfühler
 - Kältebedarfsrelais oder stetiger Ausgang zur Weiterleitung des Kältebedarfes
 - Der Kältebedarf kann auch über den Bus versandt werden, siehe Kommunikation
Raumtemperatur-Lüftungsregler (Sequenzregler 1 ist Raumtemperaturregler, Raum-Zulufttemperatur-Kaskadenregler oder Zulufttemperaturregler)

Konfigurationsschema
RMU710B / 720B / 730B
Grundtyp A

Abb. 1: Konfigurationsschema des Grundtyps A für RMU7..B
Zulufttemperaturregler, bedarfsgeführt (Sequenzregler 1 ist Zulufttemperaturregler)

Abb. 2: Konfigurationsschema des Grundtyps P für RMU7..B

Konfigurationsschema
RMU710B / 720B / 730B
Grundtyp P

Gross-Buchstabe = Physikalischer Ein- oder Ausgang
Y = analoger Ausgang
K = digitaler Ausgang
O = Relais-Ausgang
Q = Nur in diesen Gerätearten verfügbar

Klein-Buchstabe = Internes Signal
x = analog oder digital
a = analog
d = digital
i = Impuls
y = Stellsignal
z = Stützsignal

Konfiguration vornamen:
K = Kombination
= nur hier
V = Vorlauf
= Nachlauf
= Verschaltung
= Diagnosepfeil
= Steuerpunkt
= Stützpunkt
= Punkt-Ausgang
= Temperaturpunkt
= Schaltuhr
= Rückmeldung
= Betriebszustand
= Leistungsumform
= Betriebsschalter
= nach Datum
= Energiespar
= Ein/Aus

Von Gross-Buchstabe nach Gross-Buchstabe
= Analogausgang
= Digitalausgang
= Impulsausgang
= Stellsignal

x = analog oder digital
a = analog
d = digital
i = Impuls
y = Stellsignal
z = Stützsignal

Stufen-schalter 1
Stufen-schalter 2
Stufen-schalter 3

WRG = Wärmeübergabegeregelter Wärmeleiter
MEU = Multifunktionale Energieübergabe-Steuerung

Eingangsbezeichner
RMU710B / 720B / 730B
Konfigurationsschema
Bedarfsgeführter Kaltwasservorregler (Sequenzregler 1 ist bedarfsgeführter Kaltwasser-Vorlauftemperaturregler)

Konfigurationsschema
RMU710B / 720B / 730B
Grundtyp C

Abb. 3: Konfigurationsschema des Grundtyps C für RMU7..B

Eingangsbezeichner
\(x = \text{analog oder digital} \)
\(a = \text{analog} \)
\(d = \text{digital} \)
\(i = \text{impuls} \)
\(y = \text{stellsignal} \)

Gross-Buchstabe = Physikalischer Ein- oder Ausgang
Klein-Buchstabe = Internes Signal

Konfigurationen voneinander unterschieden durch

- = ODER-Auswahl
\(\Box = \) UND-Auswahl
\(\rightarrow = \text{Vorbelehnung} \)
\(\leftarrow = \text{Rückmeldung} \)
\(\text{Störung} \)

Von Große Buchstaben nach Große Buchstaben
Von Klein-Buchstaben nach Klein-Buchstaben

Von Gross-Buchstabe nach Gross-Buchstabe
Von Klein-Buchstabe nach Klein-Buchstabe
31.2.6 Konfigurationsschema RMU7..B, Grundtyp U

Abb. 4: Konfigurationsschema des Grundtyps U für RMU7..B
Konfigurationsschema
RMU710B / 720B / 730B A01 (ADA001 U1B HQ)

Abb. 5: Konfigurationsschema zum Anwendungsblatt ADA001 U1B HQ
31.2.8 Konfigurationsschema RMU710B, Anlagentyp A02

Abb. 6: Konfigurationsschema zum Anwendungsblatt ADB001 U1B HQ
31.2.9 Konfigurationsschema RMU710B, Anlagentyp A03

Konfigurationsschema RMU710B / 720B / 730B 3150B01

Konfigurationsschema RMU710B / 720B / 730B 3150B01

Abb. 7: Konfigurationsschema zum Anwendungsblatt ADC001 U1B HQ
Abb. 8: Konfigurationsschema zum Anwendungsblatt AEA001 U1B HQ

31.2.10 Konfigurationsschema RMU710B, Anlagentyp A04

Konfigurationsschema
RMU710B / 720B / 730B 3150B01

Grosz-Buchstabe = Physikalischer Ein- oder Ausgang
Klein-Buchstabe = Internes Signal

= Schaltuhr
= Ferien
= Vorbefehl
= Störung
= Rückmeldung

Von Grosz-Buchstabe nach Grosz-Buchstabe

Y = Analoger Ausgang
Q = Relais-Ausgang
X = Universeller Eingang

= Nur in diesen Gerätetypen verfügbar

= von hier
= ODER-Auswahl

Regler 1
Regler 2

Ein/Aus Trend ZählerBetriebsart Störungen H/K-Umschaltung

Mit Zuluftbegrenzung

ZUL ABLBrand

Ein/Aus Trend ZählerBetriebsart Störungen H/K-Umschaltung

Ventilatorfreigabe Relais 1 Relais 2

Stufen-Ausgang Stetiger Ausgang Stetiger Ausgang Stetiger Ausgang

Stufenschalter 1
Stufenschalter 2

Kanaldruck (DP stat.)
Volumentrom (DP dyn.)
Kanaldruck (DP stat.)
Volumentrom (linear 0..10V)

= Linear
= Binär
= Stufen-Schalter 2
= Stufen-Schalter 1

= Start/Stop
= Start/Stop
= Start/Stop
= Start/Stop

= Variable
= Variable
= Variable
= Variable

= Übersicht
= Übersicht
= Übersicht
= Übersicht
Abb. 9: Konfigurationschema RMU710B / 720B / 730B

A05 (ADAEO1 U1B HQ)
31.2.12 Konfigurationsschema RMU720B, Anlagentyp A01

Abb. 10: Konfigurationsschema zum Anwendungsblatt AEC001 U2B HQ
31.2.13 Konfigurationsschema RMU720B, Anlagentyp A02

Abb. 11: Konfigurationsschema zum Anwendungsblatt ADCE01 U2B HQ
Abb. 13: Konfigurationsschema zum Anwendungsblatt AEDB01 U2B HQ
31.2.16 Konfigurationsschema RMU720B, Anlagentyp A05

Abb. 14: Konfigurationsschema zum Anwendungsblatt ADDP01 U2B HQ
Konfigurationsschema RMU730B, Anlagentyp A01

Abb. 15: Konfigurationsschema zum Anwendungsblatt AEFB01 U3B HQ
31.2.18 Konfigurationsschema RMU730B, Anlagentyp A02

Abb. 16: Konfigurationsschema zum Anwendungsblatt ADFP01 U3B HQ
Konfigurationschema
RMU710B / 720B / 730B
A03 (ADZA01 U3B HQ)

Abb. 17: Konfigurationschema zum Anwendungsblatt ADZA01 U3B HQ

Konfiguration vornehmen:
Gross-Buchstabe = Physikalischer Ein- oder Ausgang
Klein-Buchstabe = Internes Signal

= Vorbefehl
= Störung= Rückmeldung
= Start / Befehl
= von hier

RMU730B
A03 (ADZA01 U3B HQ)
31.2.20 Konfigurationsschema RMU730B, Anlagentyp A04

Abb. 18: Konfigurationsschema zum Anwendungsblatt AEZH01 U3B HQ
31.2.21 Konfigurationsschema RMU730B, Anlagentyp A05

Abb. 19: Konfigurationsschema zum Anwendungsblatt AEZH02 U3B HQ
31.3 Menübaum

Alle Einstell- und Ablesewerte sind softwaremäßig als Datenpunkte (Bedienzeilen) des Menübaums angeordnet.

Mit den Bedienelementen der Bediengeräte kann jede Bedienzeile, entsprechend dem Zugriffsrecht, angewählt und abgelesen bzw. eingestellt werden.

Das Hauptmenü gliedert sich in 24 Untermenüs:
1. Inbetriebnahme
2. Schaltuhr
3. Raumbetriebsart
4. Anlagenbetrieb
5. Schaltuhr 1
6. Schaltuhr 2
7. [Schaltuhr 2] Betriebsschalter
8. Betriebsschalter 1
9. Betriebsschalter 2
10. Betriebsschalter 3
11. Betriebsschalter 4
12. Eingänge
13. Datenerfassung
14. Aggregate
15. Regler 1
16. Regler 2 (nur bei RMU720B/RMU730B)
17. Regler 3 (nur bei RMU730B)
18. Heizen/Kühlen Umschalt'g
19. Ferien / Sondertage
20. Zeit / Datum
21. Störungen
22. Einstellungen
23. Geräte-Informationen
24. Datensicherung

Hinweis: Je nach Grundtyp wird nur eine Untergruppe der maximal 24 Untermenüs eingeblendet.
31.4 Editierbare Texte

Die Liste der editierbaren Texte dient als Hilfsmittel für die Projektierung und Inbetriebnahme. Sie können den benutzerdefinierten Text hier schriftlich vorplanen. Der Text darf maximal 20 Zeichen lang sein.

Die Bedienertexte wie Menütexte, Störungstexte oder Bedienzeilentexte können folgendermassen in der Passwortebene zurückgesetzt werden:

<table>
<thead>
<tr>
<th>Bedienzeile</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texte zurücksetzen</td>
<td>Nein, Ja</td>
</tr>
</tbody>
</table>

Hinweis

Die Texte der Bedienzeilen "Gerätenamen", "Dateiname" und "Visitenkartenzeile 1 bis 4" im Menü Texte werden beim Zurücksetzen nicht gelöscht.

31.4.1 Eingänge

<table>
<thead>
<tr>
<th>Bedienzeilennamen</th>
<th>Benutzerdefinierter Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.X1</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td></td>
</tr>
<tr>
<td>N.X2</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td></td>
</tr>
<tr>
<td>N.X3</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td></td>
</tr>
<tr>
<td>N.X4</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td></td>
</tr>
<tr>
<td>N.X5</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td></td>
</tr>
<tr>
<td>N.X6</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td></td>
</tr>
<tr>
<td>N.X7</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td></td>
</tr>
<tr>
<td>N.X8</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td></td>
</tr>
<tr>
<td>A5 (1).X1</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td></td>
</tr>
<tr>
<td>A5 (1).X2</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td></td>
</tr>
<tr>
<td>A5 (1).X3</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td></td>
</tr>
<tr>
<td>A5 (1).X4</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
</tbody>
</table>

Hinweis
<table>
<thead>
<tr>
<th>Bedienzeilenname</th>
<th>Benutzerdefinierter Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text für: Logisch 1</td>
<td>A5 (1).X5</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A5 (1).X6</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A5 (1).X7</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A5 (1).X8</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A7 (1).X1</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A7 (1).X2</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A7 (1).X3</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A7 (2).X1</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A7 (2).X2</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A7 (2).X3</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A7 (2).X4</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A8 (1).X1</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A8 (1).X2</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A8 (1).X3</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A8 (1).X4</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td>A8 (2).X1</td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 0</td>
<td></td>
</tr>
<tr>
<td>Text für: Logisch 1</td>
<td></td>
</tr>
</tbody>
</table>
31.4.2 Aggregate

Hauptmenü > Einstellungen > Aggregate > ...

<table>
<thead>
<tr>
<th>Bedienzeilennamen</th>
<th>Benutzerdefinierter Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuluftventilator</td>
<td></td>
</tr>
<tr>
<td>Einheit</td>
<td></td>
</tr>
<tr>
<td>Abluftventilator</td>
<td></td>
</tr>
<tr>
<td>Einheit</td>
<td></td>
</tr>
<tr>
<td>Pumpe 1</td>
<td></td>
</tr>
<tr>
<td>Pumpe 2</td>
<td></td>
</tr>
<tr>
<td>Pumpe 3</td>
<td></td>
</tr>
<tr>
<td>Pumpe 4</td>
<td></td>
</tr>
<tr>
<td>Stetiger Ausgang A</td>
<td></td>
</tr>
<tr>
<td>Stetiger Ausgang B</td>
<td></td>
</tr>
<tr>
<td>Stetiger Ausgang C</td>
<td></td>
</tr>
<tr>
<td>Stetiger Ausgang D</td>
<td></td>
</tr>
<tr>
<td>Stufenschalter 1</td>
<td></td>
</tr>
<tr>
<td>Stufenschalter 2</td>
<td></td>
</tr>
<tr>
<td>Stufenschalter 3</td>
<td></td>
</tr>
<tr>
<td>Stufenschalter 4</td>
<td></td>
</tr>
<tr>
<td>Stufenschalter 5</td>
<td></td>
</tr>
<tr>
<td>Logik 1</td>
<td></td>
</tr>
<tr>
<td>Betriebsschalter 1</td>
<td></td>
</tr>
<tr>
<td>Logik 2</td>
<td></td>
</tr>
<tr>
<td>Betriebsschalter 2</td>
<td></td>
</tr>
<tr>
<td>Logik 3</td>
<td></td>
</tr>
<tr>
<td>Betriebsschalter 3</td>
<td></td>
</tr>
<tr>
<td>Logik 4</td>
<td></td>
</tr>
<tr>
<td>Betriebsschalter 4</td>
<td></td>
</tr>
</tbody>
</table>

31.4.3 Regler

Hauptmenü > Einstellungen > Regler 1...3

<table>
<thead>
<tr>
<th>Bedienzeilennamen</th>
<th>Benutzerdefinierter Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regler 1</td>
<td></td>
</tr>
<tr>
<td>Regler 2</td>
<td></td>
</tr>
<tr>
<td>Regler 3</td>
<td></td>
</tr>
</tbody>
</table>

31.4.4 Störungen

Hauptmenü > Einstellungen > Störungen > Störungseingang 1...10

<table>
<thead>
<tr>
<th>Bedienzeilennamen</th>
<th>Benutzerdefinierter Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Störungstext 1</td>
<td></td>
</tr>
</tbody>
</table>
31.4.5 Trend

Hauptmenü > Einstellungen > Datenerfassung > Trendkanal 1...4 >

<table>
<thead>
<tr>
<th>Bedienzeilennamen</th>
<th>Benutzerdefinierter Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trendkanal 1</td>
<td></td>
</tr>
<tr>
<td>Trendkanal 2</td>
<td></td>
</tr>
<tr>
<td>Trendkanal 3</td>
<td></td>
</tr>
<tr>
<td>Trendkanal 4</td>
<td></td>
</tr>
</tbody>
</table>

31.4.6 Zähler

Hauptmenü > Einstellungen > Datenerfassung > Zähler 1...2 >

<table>
<thead>
<tr>
<th>Bedienzeilennamen</th>
<th>Benutzerdefinierter Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zähler 1</td>
<td></td>
</tr>
<tr>
<td>Zähler 2</td>
<td></td>
</tr>
</tbody>
</table>

31.4.7 Schaltuhr

Hauptmenü > Einstellungen > Schaltuhr 2 >

<table>
<thead>
<tr>
<th>Bedienzeilennamen</th>
<th>Benutzerdefinierter Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltuhr 2</td>
<td></td>
</tr>
<tr>
<td>[Schaltuhr 2] Betriebsschalter</td>
<td></td>
</tr>
</tbody>
</table>

31.4.8 Gerät

Hauptmenü > Einstellungen > Texte >

<table>
<thead>
<tr>
<th>Bedienzeilennamen</th>
<th>Benutzerdefinierter Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerätename</td>
<td></td>
</tr>
<tr>
<td>Dateiname</td>
<td></td>
</tr>
<tr>
<td>Visitenkartenzeile 1</td>
<td></td>
</tr>
<tr>
<td>Visitenkartenzeile 2</td>
<td></td>
</tr>
<tr>
<td>Visitenkartenzeile 3</td>
<td></td>
</tr>
<tr>
<td>Visitenkartenzeile 4</td>
<td></td>
</tr>
</tbody>
</table>
Stichwortverzeichnis

A
Abweichungsmeldung .. 204
Allgemeinbegrenzer ... 197
Analoge Eingänge .. 70
Anfahrscaltung ... 137
Anlagenbetriebsvorgabe .. 47
Anlagenbetriebswahl .. 47
Anlagenbetriebszustand ... 47
Anwendung
 Angepasst .. 15
 Vorkonfiguriert .. 15
 Freie Konfiguration ... 15
Anzeige der Zählerstände 90
Ausgang-Invertierung .. 121
Aussentemperatur ... 74
Aussentemperatur am Bus 74
Ausstieg aus der Inbetriebnahme 28
Ausstieg aus der Passwortebene 29

B
Bedarfsgeführte Zulufttemperaturregelung 179, 235
Bedarfsgeführter Kaltwasserregler 45
Bedienebenen .. 19
Bedienelemente .. 17, 18
Bediengerät .. 18
Bedienung ... 17
Beispiele Stützbetrieb .. 225
Benutzereingriffe .. 47
Betriebsarten .. 36, 41, 42
Binärer Stufenschalter ... 141

D
Dateiname ... 35
Datensicherung ... 29
Digitale Eingänge .. 79
Display-Kontrast ... 34

E
Eingangsklemmen-Simulation 68
Eingangstyp .. 70
Einschaltoptimierung ... 231
Elektrische Anschlüsse ... 289
Erweiterungsmodule .. 26

F
Fehlercode-Liste ... 283
Ferien/Sondertagsprogramm 52
Fernsollwert absolut ... 80
Fernsollwert relativ .. 82
Frostschutz ... 210
Frostschutz wasserseitig 213
Fühler-Anschlussbeispiele 71
Fühlermeinhastverfahren 72
Funktionsblock
 Betriebsarten ... 41
 Störungen .. 243

G
Geografischen Zone (Apartm.) 49, 50
Geographical zone (apartment) 50
Geräte-Informationen ... 30
Gerätekombinationen ... 11
Gerätenamen ... 34
Gerätesortiment ... 9
Grundkonfiguration .. 26
Grundtyp A
 Kurzcharakteristik ... 21
Grundtyp C
 Kurzcharakteristik ... 23
Grundtyp P
 Kurzcharakteristik ... 22
Grundtyp U
 Kurzcharakteristik ... 24
 Grundtypen ... 26
Heizen/Kühlen Umschaltung 262

I
Impuls ... 84
Inbetriebnahme ... 25
Inbetriebnahme-Datensatz 29

J
Jahresuhr .. 31

K
Kalendereintrag .. 53
Kältebedarf .. 256
Kältebedarf intern .. 260
Kältebedarf statig ... 260
Kältebedarfsrelais ... 259
Kaskaden-/Konstantregelung mit Umschaltung via
 Kask./Konst.-Umschalteinigkeit 171
 Kaskadierung von Stufenschalter 143
 Kennzeichnung eines Eingriffs 30
 Kommunikation ... 270
 Grundeinstellungen .. 270
 Konfigurationsschemen 293

325/328
L
Leistung im Überblick .. 13
Linearer Stufenschalter ... 140
Logik .. 153
Anwendungsbeispiel RS-Flip Flop 158
Luftqualitätsregler ... 206

M
Maximum-Economy-Umschaltung 124, 135
Menübaum .. 320
Messwertkorrektur ... 70
Mischluftklappe .. 132

N
Nachkühlung ... 229

P
Produktedokumentationen .. 12
Pumpen .. 108
Betriebsstunden ... 120
Frostbedingt Ein ... 117
Motorenkick .. 118
Strömungsmeldung .. 112
Überlastmeldung ... 114
Vorbefehl .. 114
Vorbefehl-Rückmeldung ... 115

R
Raum- oder Ablufttemperaturregelung 165
Raum/Zuluft- oder Abluft/Zuluft-Kaskadenregelung 168
Raumbetriebsart ... 46
Raumbetriebsart-Ausgänge 55, 57
Raumbetriebsartvorgabe 46
Raumbetriebsartzahl ... 46
Raumbetriebsartzustand 46
Raumbetriebswahlschalter 44
Raumregelungskombinationen 58
Raumregelungskombinationen mit Heizungsregler 172
Raumtemperatur .. 76
Mittelwertbildung .. 76
Raumtemperaturegelung mit Zuluftbegrenzung 166
Regelungs-Timeout .. 205

S
Schaltuhr 2 ... 63
Sequenzbegrenzer ... 200
Sequenzregler .. 192
Sequenzregler, Zuordnung der Aggregate 192
Sequenzsperrung nach Heizen/Kühlen Umschaltung 203
Sequenzsperrung nach TA .. 202
Simulation Aussentemperatur 75
Sommer/Winterkompensation 175, 176
Sommer/Winterzeitumstellung 31
Spezielle analoge Eingänge 73
Sprachenwahl .. 34
Stetiger Ausgang ... 121
Steureingang "Ferien/Sondertage" 54
Störungen löschen .. 287
Störungsanzeige ... 286
Störungseingänge ... 245
Störungshistorie ... 287
Störungsquittierung .. 286
Störungsrelais 1 .. 248
Störungstaste extern ... 248
Stufenschalter .. 148
Stufenschalter, Variabel ... 139
Stüfbetrieb ... 220

T
Temperatur-Einheit .. 34
Timerfunktion ... 43
Trend
Ansichten ... 85
Einstellungen .. 86
Fehlerbehandlung ... 87
Funktionsblock .. 85

U
Übersicht der Regelungsarten 160
Umgang mit Störungen ... 282
Umluftbetrieb .. 227
Universalregler (Grundtyp A, P, C, U) 189
Universalschiebung ... 203
Universelle Eingänge ... 66
Grund ... 68
Universelle Störungseingänge 244

V
Ventilator ... 91
1-stufig .. 93
2-stufig .. 94
Betriebsstunden ... 106
Start- und Stoppvorgaben 104
Strömungsmeldung .. 101
Überlastmeldung ... 102
Vorbefehl ... 102
Vorbefehl-Rückmeldung .. 103
Ventilator mit variabler Drehzahl 95
Ventilator-Freigaberegler 249
Verdrahtungstest .. 28
Visitenkarte ... 35
Vorlaufwassertemperaturregler, bedarfsgeführt (Grundtyp C) 182
Vorwärmfunktion ... 217

W
Wärmebedarf .. 250
Wärmebedarf stetig ... 254
Wärmebedarfsrelais .. 252
Wärmerückgewinner .. 123
Warmwasser-Lufterwärmer .. 217
Wichtige Hinweise ... 16
Wirkungsgrad-Überwachung 127
Wirkungsweise der Frostwächter 212
Wochenprogramm .. 49
Wochenschaltuhr ... 49

Z
Zähler ... 88
 AnzeigefORMAT .. 88

Impulswertigkeit ... 89
Überlaufswert .. 89
Zählerstände setzen und rücksetzen 89
Zeitformat ... 31
Zugriffsebenen .. 20
Zugriffsrecht .. 20
Zuluft-Temperaturregelung 164
Zulufttemperaturregler, bedarfsgeführt (Grundtyp P) 177, 235
Zwillingspumpe ... 110